
Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Milan Straka

Functional Data Structures

and Algorithms

Computer Science Institute of Charles University

Supervisor of the thesis: doc. Mgr. Zdeněk Dvořák, Ph.D.

Study programme: Computer Science

Specialization: Discrete Models and Algorithms (4I4)

Prague 2013

I am grateful to Zdeněk Dvořák for his support. He was very accommodative

during my studies. He quickly discovered any errors in my early conjectures and

suggested areas of interest that prove rewarding.

I would also like to express my sincere gratitude to Simon Peyton Jones for

his supervision and guidance during my internship in Microsoft Research Labs,

and also for helping me with one of my papers. Our discussions were always very

intriguing and motivating.

Johan Tibell supported my work on data structures in Haskell. His enthusiasm

encouraged me to overcome initial hardships and continues to make the work

really enjoyable.

Furthermore, I would like to thank to Michal Koucký for comments and dis-

cussions that improved the thesis presentation considerably.

Finally, all this would not be possible without my beloved wife and my parents.

You make me very happy, Jana.

iii

iv

I declare that I carried out this doctoral thesis independently, and only with the

cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that

the Charles University in Prague has the right to conclude a license agreement

on the use of this work as a school work pursuant to Section 60 paragraph 1 of

the Copyright Act.

In Prague, date 12th August 2013 ...

signature of the author

v

vi

Název práce: Funkcionální datové struktury a algoritmy

Autor: Milan Straka

Ústav: Informatický ústav Univerzity Karlovy

Vedoucí doktorské práce: doc. Mgr. Zdeněk Dvořák, Ph.D, Informatický ústav

Univerzity Karlovy

Abstrakt: Funkcionální programování je rozšířené a stále více oblíbené programo-

vací paradigma, které nachází své uplatnění i v průmyslových aplikacích. Datové

struktury používané ve funkcionálních jazycích jsou převážně perzistentní, což

znamená, že pokud jsou změněny, zachovávají své předchozí verze. Cílem této

práce je rozšířit teorii perzistentních datových struktur a navrhnout efektivní

implementace těchto datových struktur pro funkcionální jazyky.

Bezpochyby nejpoužívanější datovou strukturou je pole. Ačkoli se jedná

o velmi jednoduchou strukturu, neexistuje jeho perzistentní protějšek s konstantní

složitostí přístupu k prvku. V této práci popíšeme zjednodušenou implementaci

perzistentního pole s asymptoticky optimální amortizovanou časovou složitostí

Θ(log log n) a především téměř optimální implementaci se složitostí v nejhorším

případě. Také ukážeme, jak efektivně rozpoznat a uvolnit nepoužívané verze

perzistentního pole.

Nejvýkonnější datové struktury nemusí být vždy ty, které jsou založeny na

asymptoticky nejlepších strukturách. Z toho důvodu se také zaměříme na imple-

mentaci datových struktur v čistě funkcionálním programovacím jazyku Haskell

a podstatně zlepšíme standardní knihovnu datových struktur jazyka Haskell.

Klíčová slova: perzistentní datové struktury, perzistentní pole, algoritmy se složi-

tostí v nejhorším případě, čistě funkcionální datové struktury, Haskell

vii

viii

Title: Functional Data Structures and Algorithms

Author: Milan Straka

Institute: Computer Science Institute of Charles University

Supervisor of the doctoral thesis: doc. Mgr. Zdeněk Dvořák, Ph.D, Computer

Science Institute of Charles University

Abstract: Functional programming is a well established programming paradigm

and is becoming increasingly popular, even in industrial and commercial appli-

cations. Data structures used in functional languages are principally persistent,

that is, they preserve previous versions of themselves when modified. The goal

of this work is to broaden the theory of persistent data structures and devise

efficient implementations of data structures to be used in functional languages.

Arrays are without any question the most frequently used data structure.

Despite being conceptually very simple, no persistent array with constant time

access operation exists. We describe a simplified implementation of a fully per-

sistent array with asymptotically optimal amortized complexity Θ(log log n) and

especially a nearly optimal worst-case implementation. Additionally, we show

how to effectively perform a garbage collection on a persistent array.

The most efficient data structures are not necessarily based on asymptotically

best structures. On that account, we also focus on data structure implementations

in the purely functional language Haskell and improve the standard Haskell data

structure library considerably.

Keywords: persistent data structures, persistent arrays, worst-case algorithms,

purely functional data structures, Haskell

ix

x

Contents

1 Introduction 1

1.1 Functional programming . 1

1.2 Persistent Data Structures . 5

1.3 Structure of the Thesis . 9

I Persistent Data Structures 13

2 Making Data Structures Persistent 15

2.1 Path Copying Method . 17

2.2 Making Linked Structures Persistent 18

2.3 Making Linked Structures Persistent in the Worst Case 25

2.4 Making Amortized Structures Persistent 29

3 Navigating the Version Tree 39

3.1 Linearizing the Version Tree . 40

3.2 List Labelling . 40

3.3 List Order Problem . 46

4 Dynamic Integer Sets 53

4.1 Van Emde Boas Trees . 54

4.2 Exponential Trees . 58

5 Persistent Arrays 63

5.1 Related Work . 65

5.2 Lower Bound on Persistent Array Lookup 67

5.3 Amortized Persistent Array . 69

5.4 Worst-Case Persistent Array . 74

5.5 Improving Complexity of Persistent Array Operations 76

5.6 Garbage Collection of a Persistent Array 78

xi

xii CONTENTS

II Purely Functional Data Structures 85

6 Persistent Array Implementation 87

6.1 Fully Persistent Array Implementation 87

6.2 Choosing the Best Branching Factor 90

7 BB-ω Trees 95

7.1 BB-ω Trees . 96

7.2 Rebalancing BB-ω Trees . 99

7.3 Choosing the Parameters ω, α and δ 101

7.4 BB-ω Trees Height . 106

7.5 Performance of BB-ω Trees . 107

7.6 Reducing Memory by Utilizing Additional Data Constructor . . . 109

8 The Haskell containers Package 113

8.1 The containers Package . 114

8.2 Benchmarks . 117

8.3 Improving the containers Performance 128

8.4 New Hashing-Based Container . 137

9 Conclusion 147

Bibliography 149

List of Terms and Abbreviations 159

List of Figures 161

Attachments 163

A.1 Generating Figure 7.3 . 163

A.2 Packages Used in Chapter 8 . 164

Chapter 1

Introduction

Computer programming has been developing enormously ever since the first

high-level languages were created,1 and several fundamental approaches to com-

puter programming, i.e., several programming paradigms, have been designed.

The prevalent approach is the imperative programming paradigm, represented for

example by the wide-spread C language.

The imperative paradigm considers a computer program to be a sequence of

statements that change the program state. In other words, serial orders (imper-

atives) are given to the computer.

The declarative programming represents a contrasting paradigm to the im-

perative programming. The fundamental principle of declarative approach is

describing the problem instead of defining the solution, allowing the program to

express what should be accomplished instead of how should it be accomplished.

The logic of the computation is described without dependence on control flow, as

opposed to the imperative programing, where the control flow is a fundamental

part of any program.

One of the well established way of realizing the declarative paradigm is func-

tional programming.

1.1 Functional programming

Functional programming treats computations as evaluations of mathematic func-

tions and the process of program execution is viewed as application of functions

instead of changes in state.

1FORTRAN, “Formula Translator”, released in 1954, is considered the first high-level lan-

guage with working implementation.

1

2 CHAPTER 1. INTRODUCTION

Referential Transparency

A major difference between functional and imperative programming is absence

of side effects that change global program state. Function has a side effect,

if, in addition to returning a value, it irreversibly modifies some global state or

has an observable effect on the outside world, like displaying a message on a

screen. Side effects are common in imperative programming, while in functional

programming, output of a function depends solely on the input arguments and

not on an internal state of a program. Therefore, calling a function twice with the

same arguments produces the same result. Functional programs are referentially

transparent, meaning that a function can be replaced by its resulting value without

changing the behaviour of the program.

The functional languages that completely lack the side effects are usually

called purely functional and considered declarative. Because purely functional

language does not define a specific evaluation order, various evaluation strategies

are possible. One of the most theoretically and practically interesting strategies

is lazy evaluation. Under lazy evaluation, expressions are not evaluated imme-

diately, but their evaluation is delayed until their results are needed by other

computations. This contrasts with the standard strategy, also called eager eval-

uation, where expressions are evaluated when occurring.

A purely functional language compiler can also rewrite the programs sub-

stantially while preserving the semantics and can therefore introduce substantial

optimizations,2 that would be very difficult to perform on programs with side

effects.

The absence of side effects and possibility to choose evaluation strategy is

particularly suitable for developing parallel programs, because the program parts

are independent except for explicitly marked dependences. This independence

even allows parallel execution of programs designed as sequential, although the

possibilities of parallel execution may be limited.

In addition, referential transparency simplifies reasoning about computer pro-

grams to the level of making formal proofs of program correctness practical.

Nevertheless, most functional languages do allow side effects. In that case,

some program parts exhibit side effects and have specific evaluation order, i.e.,

utilize the imperative programming paradigm, usually to perform input and out-

put operations like drawing to a screen, sending data over the network or reading

keyboard input. The other program parts are side effect free and benefit from all

2An example of an useful optimization is deforestation (also known as fusion), which is a

program transformation eliminating intermediate data structures.

1.1. FUNCTIONAL PROGRAMMING 3

the advantages of functional programming.

Apart from referential transparency, there are two particular additional char-

acteristics of functional programming.

First-Class Functions

Functions behave like ordinary values in functional programming. They can be

passed as arguments to other functions, which is a frequently mentioned func-

tional programming feature. Functions can also be assigned to variables or stored

in data structures. Finally, functional programming allows new function creation

and function composition in a straightforward way.3

The higher-order functions, i.e., functions taking other functions as arguments,

together with lazy evaluation have a huge impact on modularity, an issue de-

scribed in great detail in [Hug89]. This work demonstrates that higher-order

functions offer a great level of generality, allowing to express algorithms that can

be specialized suitably in every situation. Lazy evaluation enables composing

functions effectively, performing only computations that are really needed, with-

out any additional programming effort. Proper usage of these idioms result in

small and more general modules, that can be reused widely, easing subsequent

programming.

Type Systems

Many functional languages are based on a typed lambda calculus, especially

since the development of the Hindley-Milner type inference algorithm [DM82],

because of its completeness and ability to automatically infer the most generic

type. The strong type checking performed by the compiler prevents many errors

and the automatic type inference frees the programmer from specifying a type

for every binding.

1.1.1 Haskell

Haskell [PJ+03] is a purely functional language with lazy evaluation. Although

no side effects are allowed, specified program parts can behave imperatively, ex-

3Passing a function as arguments to other functions is undoubtedly an useful feature. How-

ever, although it is provided by nearly all imperative languages (e.g., via function pointers

in C), it is not so useful without other function manipulation operations. Recently, imper-

ative languages draw inspiration from functional programming and allow additional function

manipulations, for example C++11 and C# 3.0.

4 CHAPTER 1. INTRODUCTION

ecuting the input and output actions sequentially. This is achieved by using

monads [Wad90a, Wad92].

Even though Haskell utilizes lazy evaluation, Haskell programs achieve high

performance and several large-scale projects are implemented in Haskell, for ex-

ample a revision control system (darcs), several web servers and frameworks

(happstack, snap, warp, yesod), tiling window manager (xmonad) and many

Haskell compilers.

The Haskell language is standardized, the most widespread version is Haskell

98 [PJ+03], which has been revised recently as Haskell 2010 [Mar10]. Although

there are several Haskell compilers, one of them, GHC, the Glasgow Haskell

Compiler, is most widely used and offers most features.

We chose Haskell as the functional language to use in this thesis, because it

is one of the most used functional languages and despite being purely functional

and providing advanced functional programming techniques like lazy evaluation,

it has decent performance.

1.1.2 Purely Functional Data Structures

Purely functional data structures are data structures implemented in a purely

functional language, therefore, without any side effects. Such data structures

are immutable, i.e., it is not possible to change any existing value in the data

structure, because overwriting memory is a side effect and thus not allowed in a

purely functional language.

Purely functional data structures are usually implemented using algebraic da-

ta types, which are possibly recursive sum types of product types. In other words,

an algebraic data type consists of several alternatives, usually called constructors,

and each constructor is a product type containing several values, called fields.

A frequently appearing example of algebraic data type is the singly linked list.

A singly linked list is either empty or consists of the first element and the rest of

the list. This type can be defined in Haskell as follows:

data List a = Nil | Cons a (List a)

Operations on algebraic data types are defined using pattern matching, which

allows inspecting both constructors and fields of a given type. For illustration,

Haskell implementation of a method computing sum of list elements follows:

sum Nil = 0

sum (Const head tail) = head + sum tail

1.2. PERSISTENT DATA STRUCTURES 5

Many purely functional data structures exist with the same time complexity

as their imperatively implemented counterparts, for example singly linked lists,

stacks, queues, balanced binary search trees, random access lists and priority

queues. [Oka99] describes a wide range of purely functional data structures and

advanced techniques.

Purely functional data structures usually have higher space complexity com-

pared to the imperative implementations, because they avoid overwriting existing

values. On the other hand, these structures are immutable. Immutable struc-

tures are inherently thread-safe, i.e., can be used from multiple threads without

any synchronization, because no thread can overwrite any parts of the structure

which might be shared. In addition, immutable structures are usually conceptual-

ly simpler and offer higher security than structures where overwriting is allowed.

The most frequently used data structure is undoubtedly an array. Unfortu-

nately, no purely functional array implementation exists which would have con-

stant time complexity of operations. We deal with functional arrays in a great

deal in this thesis, devoting Chapters 5 and 6 to the problem of functional arrays.

1.2 Persistent Data Structures

Interestingly, data structures used in purely functional programs do not necessari-

ly need to be implemented in a purely functional way. It is sufficient for a structure

to behave as if it was never modified, even though the implementation may utilize

assignments and modify existing values. This leads to the notion of persistence.

A data structure is persistent, if it preserves the previous version of itself when

modified. The structure is partially persistent, if only the newest version can be

modified and all versions of the structure accessed. If all versions of the structure

can be modified and accessed, the data structure is fully persistent.

Versions of a fully persistent data structure form a rooted tree, where the

root is the initial version of the structure and an edge denotes that a version was

created from its predecessor. In case of partially persistent structures, versions

form a directed path.

Versions of a persistent data structure can be identified in several ways. One

possibility, prevalent in purely functional data structures, is to consider each ver-

sion to be an independent structure. This way, no explicit identification of a ver-

sion is needed, but on the other hand, it is complicated to recognize structure

parts shared by multiple versions. Therefore, the structure versions are usually

immutable in this case. The other possibility, quite common in imperative imple-

6 CHAPTER 1. INTRODUCTION

mentations of persistent structures, is to represent all versions using one shared

data structure and identify the versions using a usually integral key, possibly

accompanied by access pointers of the structure (i.e., a tree root or a list head)

or other data. In this manner, sharing of parts of the structure is explicit, but

the implementation is imperative, overwriting parts of the shared data structure

when a new version is created.

Any fully persistent data structure can be used in a purely functional language,

because modifying the structure does not cause any observable side effects. Nev-

ertheless, persistence is useful on its own accord. Consider the classic problem of

planar point location, where the plane is subdivided into polygons by n line seg-

ments intersecting only at their endpoints. Given a sequence of query points in the

plane, the goal is to determine for every query point the polygon which contains it.

The planar point location can be solved efficiently using persistent search

trees, as demonstrated by [ST86]. When we draw a vertical line through every

vertex, we divide the plane into vertical slabs. Every slab consists of regions

separated by non-intersecting lines, which are linearly ordered. If we store the

intersecting lines of a slab in a binary search tree, we can locate the region of the

slab containing the query point in O(log n) time. Therefore, if we represent each

slab using a binary search tree and we also create a binary search tree contain-

ing the slab boundaries, we can locate a polygon containing the query point in

O(log n) time. An example of such construction is illustrated in Figure 1.1.

Figure 1.1: Planar location using partially persistent search tree

1.2. PERSISTENT DATA STRUCTURES 7

The problematic part of the described solution is that each slab can contain

O(n) regions, so the whole construction could require O(n2) space. However,

the persistence comes to the rescue. Instead of constructing the slabs indepen-

dently, we create the leftmost slab first and then construct further slabs incre-

mentally, using partially persistent search trees. Because every line segment is

added and removed at most once, constructing all slabs require only n insertions

and n deletions in the partially persistent structure. The authors also describe

a partially persistent variant of red-black trees, which perform insertions and

deletions in O(log n) time and O(1) space. Therefore, the whole preprocessing

needs O(n log n) time and O(n) space and queries can be performed in O(log n).

Apart from using persistent structures in functional languages and the de-

scribed planar point location, there are numerous other applications of persis-

tence, for example in computational geometry [Cha85, Col86, DM85, Ove81a,

Ove81b], during object oriented programming inheritance computation [Die89],

in tree pattern matching [CPT92] and when implementing continuations in func-

tional programming languages [DST94].

Naturally, persistent structures are beneficial in search programs maintaining

data structures while exploring trees, for example game tree searches. Fully

persistent modifiable lists and sorted set are also often used, for instance in text

editing [RTD83a, Mye84]. In addition, fully persistent structures are utilized in

simulations detecting data races or deadlocks.

Persistent data structures can further be used in archival databases or revi-

sion control systems (the database of Git [Loe09], a widespread revision control

system, is in fact an immutable fully persistent data structure).

1.2.1 Worst-Case and Amortized Complexity

There are two different ways how to measure complexity of an operation, assuming

we are performing a whole sequence of such operations.

• We can measure the complexity of the slowest operation possible, i.e., the

worst-case complexity.

• We can measure the “average” complexity of an operation. Specifically, if

n operations take time O(f(n)), we say that the amortized complexity of

an operation is O(f(n)/n).

The amortized complexity is obviously never larger than the worst-case com-

plexity. For several algorithms, the amortized complexity can even be asymptot-

ically smaller than the worst-case complexity. Consider the well-known disjoint

8 CHAPTER 1. INTRODUCTION

set union-find data structure [Tar83], which keeps track of a partition of a set into

disjoint subsets and allows joining two subsets into a single subset. Blum [Blu86]

showed that the worst-case complexity of this problem is Ω(log n/ log log n) in

the separable pointer machine model and Fredman and Saks [FS89] proved the

lower bound even in the cell probe model. On the other hand, Tarjan [Tar75]

showed that the amortized complexity of this problem is O(α(n)), where α(n) is

the inverse of the Ackermann function.

Amortized complexity is therefore suitable when optimizing throughput, at

the cost of a possibly long running time of few operations. However, in many

situations the unbounded running time of a single operation is disadvantageous:

• Structures with amortized complexity are unsuitable in real-time and inter-

active environments, for example, in a flight simulator it is vital to respond

smoothly to the pilot’s movements, and a power plant control system must

respond immediately to the changing conditions of the power plant.

Modern LISP systems use incremental garbage collection [Wad76, Bak78b],

which can be considered a worst-case variant of garbage collection, instead

of classical garbage collection, which is efficient in the amortized sense.

The paper [Wad76] justifies incremental garbage collection on an example

of a tennis-playing robot stopping in mid-swing to garbage collect.

• Amortized structures perform poorly in parallel environments. If a task is

performed by several processors and all operations on one of the processors

have a long running time, this processor finishes well after all others and

slows down the entire task. Alternatively, if an amortized data structure

is shared by several processors, the processors spend large amounts of idle

time when waiting for the processor executing long running operation.

For example, the paper [FT87] introduces Fibonacci heaps, which is an

efficient amortized data structure that speeds up Dijkstra’s shortest-path

algorithm in sequential setting. However, in [DGST88] the attempts to

use Fibonacci heaps in a parallel environment to achieve similar improve-

ments fail because of the mentioned reasons. The authors therefore develop

a worst-case variant of Fibonacci heaps, the relaxed heaps, which improves

the performance of Dijkstra’s shortest-path algorithm in parallel setting.

• The existing methods for making data structures persistent work efficiently

only with worst-case structures [DSST89]. Moreover, we prove in Section 2.4

that fully persistent variants of amortized data structures can perform very

poorly.

1.3. STRUCTURE OF THE THESIS 9

Therefore, persistent structures with worst-case complexities are more ver-

satile and can be used in a wider range of applications. Often the worst-case

complexity is the same as the amortized complexity and in that case, persis-

tent data structures with worst-case complexity are preferable to structures with

amortized complexity.

1.3 Structure of the Thesis

The goal of this thesis is to devise new data structures and improve the existing

data structures that can be used in functional languages.

The thesis consists of two complementary parts. The first part deals with

persistent data structures with good asymptotic complexities, concentrating on

the fully persistent array data structure presented in [Str09]. The second part

discusses purely functional data structures with supreme running times instead

of low asymptotic complexity. We focus on the study of Adams’ trees covered

by the author’s paper [Str12], and improve the Haskell de facto standard data

structure library containers, as described by the author’s paper [Str10].

Persistent Data Structures

In the first part of the thesis we focus on persistent data structures. These

structures usually have imperative implementations and use side effects internally,

but retain all the previous versions and appear immutable from the outside. We

are interested in asymptotic complexities of the structures and their optimal lower

and upper bounds, extending the theoretical understanding of persistent data

structures. However, we do not neglect the real performance of the structures

and devote the second part of the thesis to designing efficient implementations.

The main contribution of the first part of the thesis is the study of persis-

tent arrays presented in Chapter 5. We present an amortized and worst-case

implementations of a fully persistent array, and show how to deal with garbage

collection of these implementations. The sketch of an amortized implementa-

tion has already been published in the extended abstract [Die89], however, our

construction uses simpler auxiliary structures and is more suitable as a basis for

the worst-case implementation. The amortized implementation has optimal com-

plexity and the worst-case implementation has nearly-optimal complexity, which

can be improved to optimal if an open problem of worst-case dynamic integer

set from [AT07] is solved. We also show how to deal with garbage collection of

persistent arrays. This topic has not been addressed by existing persistent array

10 CHAPTER 1. INTRODUCTION

publications, which makes the implementations unable to free the array versions

that are no longer used. We describe novel algorithms for recognizing unused ver-

sions and reaching optimal memory utilization in case some of the array versions

become unreachable.

We also explore the possibility of making amortized data structures persis-

tent. We start Chapter 2 by describing general methods for making worst-case

data structures persistent, both with amortized and worst-case complexities, sum-

marising the results of [DSST89, Bro96, Ram92]. We then consider general meth-

ods of creating efficient persistent variants of amortized structures. These meth-

ods use additional operations of the amortized structures that are common and

allow controlling the amortized complexity of the structures. Because these meth-

ods turn out to be quite inefficient, we concentrate primarily on proving the lower

bounds.

Chapters 3 and 4 describe algorithms and data structures needed in the con-

struction of the persistent array. In Chapter 3 we deal with the problem of nav-

igating the version tree of persistent structures. This problem is related to two

well-known problems, the list labelling and the list order problem. We describe so-

lutions of the amortized and worst-case list order problem from [DS87] and simpler

solutions of the amortized list labelling and list order problem from [BCD+02].

We also present an algorithm for worst-case list labelling with polynomial la-

bels, which we need in the construction of persistent arrays. Such an algorithm

was designed by [BCD+02] and should appear in a journal version of this pa-

per. However, at the time of writing of this thesis, the journal version of the

paper [BCD+02] has not yet been submitted for publication. In order to give

a complete description of persistent arrays, we present an algorithm for worst-

case list labelling with polynomial labels, which we devised independently. Using

this algorithm we describe a slightly simpler solution to the worst-case list order

problem in the lines of the solution of [DS87], and utilize it in the construction

of the persistent array.

Structures suitable for representing dynamic integer sets are described in Chap-

ter 4. These structures are substantially faster than binary search trees and in

conjunction with the list labelling provide efficient algorithms for searching in the

version tree, sometimes with optimal complexity. This chapter mostly summa-

rizes known results, we only propose an improved representation of worst-case

van Emde Boas trees with smaller space complexity.

The detailed information about the contribution of this work can be found at

the end of every chapter in the Chapter Notes section.

1.3. STRUCTURE OF THE THESIS 11

Purely Functional Data Structures

In the second part of the thesis we develop purely functional data structure imple-

mentations with best possible running times. The purely functional data struc-

tures are the prevalent data structures of functional languages and are used by

a large number of users and companies.4 We implement the data structures in

Haskell, although we usually do not exploit advanced techniques like lazy eval-

uation and therefore the implementations can be ported to nearly all functional

languages without loss of performance.5

Our main contribution is the study of Adams’ trees in Chapter 7. Adams’

trees are fully persistent balanced binary trees often used in functional languages.

However, the existing correctness proof is flawed, which manifested itself in several

implementations by violating the balance of the tree during deletions, which was

discovered independently by us and by Taylor Campbell [Cam]. We present

a valid correctness proof and investigate the space of Adams’ trees parameters,

measuring their impact on performance and height of the tree. In addition,

we devise an improved representation leading to 20-30% memory reduction and

improved time complexity of operations.

In Chapter 8 we concentrate on improving the actual performance of the

standard Haskell library of purely functional data structures, the containers

package [PkgCont]. We start by comparing the data structures of this package

to all available alternatives. We then describe the changes of the implementation

and also of the compiler we employed in last three years. The library currently

offers the most efficient implementations available and is used by every third

Haskell package.6 We also propose a new data structure based on hashing, which

outperforms available string set implementations.

In Chapter 6 we devise a fully persistent array implementation and choose

the best parameters of the implementation using benchmarking.

4The CUFP, commercial users of functional programming conference, has been taking place

annually since 2004. Also, a list of companies using Haskell industrially can be found at

http://www.haskell.org/haskellwiki/Haskell_in_industry.
5For example, the IntMap data structure from the Haskell containers package has been

ported to F# in the fsharpx project, retaining its efficiency.
6On 14th May 2013, the containers package was used by 1782 out of 5132 packages

available on HackageDB, which is a centralized repository of Haskell packages.

http://www.haskell.org/haskellwiki/Haskell_in_industry

12 CHAPTER 1. INTRODUCTION

Part I

Persistent Data Structures

13

Chapter 2

Making Data Structures

Persistent

Ordinary data structures are ephemeral – after modifying the structure only the

new version of the structure remains and the original version is not accessible

anymore. However, it is often useful to be able to access or even modify multiple

versions of the structure.

Definition 2.1. A data structure is persistent, if it preserves the previous version

of itself when modified. If only the newest version can be modified and all the

versions of the structure can be accessed, the data structure is partially persistent.

A fully persistent data structure allows accessing and modifying all its versions.

Many persistent structures have been devised: stacks [Mye83], lists [DST94],

sequences [HP06], priority queues [BO96], search trees [Mye84, Ove81a, RTD83b,

KM83, Ada92, Ada93, Str12, HY11], tries [OG98, Gou94, Bag01] and related

structures [Cha85, Col86, DM85]. In addition, [Oka99] describes a wide range of

purely functional data structures and advanced techniques.

Most of these structures have been constructed independently and without

systematic approach at first. That changed with the paper [DSST89], which

introduced a generic method of creating a fully persistent structures. This method

works for any linked data structures with bounded in-degree.

Definition 2.2. A data structure is a linked data structure, if it is a collection

of nodes, each containing a fixed number of fields – both information fields and

pointer fields. A linked data structure has bounded in-degree if, for each node,

the number of pointer fields referencing this node is bounded by a constant.

Such structures can be made partially persistent and even fully persistent.

The operations on these structures must consist of a sequence of access steps

15

16 CHAPTER 2. MAKING DATA STRUCTURES PERSISTENT

and update steps. In an access step, a field of a node is retrieved. In an up-

date step, a field of a node is changed or a new node is added. The resulting

persistent structures have worst-case O(1) time complexity per access step and

amortized O(1) time and space complexity. Therefore, the amortized complexity

of persistent structures is the same as the worst-case complexity of the ephemer-

al structures. The method of creating persistent structures is described further

in Section 2.2.

This method can be used to create persistent variants of many basic structures

like lists, balanced trees, tries, priority queues and others. However, it has several

limitations. One of the downsides of the method is that update operations have

no worst-case bound. We describe several methods for improving the worst-case

complexity in Section 2.3.

Also, the original method cannot be used on structures with amortized com-

plexity. The problem is that amortization depends on the structure being ephemer-

al – if an operation takes a long time to execute, this long running time is compen-

sated by many other operations executing quickly. But in the persistent setting,

we can repeat the time consuming operation at will. Therefore, we consider gen-

eral methods of creating efficient persistent variants of amortized data structures

in Section 2.4. These methods use common additional operations of the amor-

tized data structures to control the amortized complexity. The general methods

turn out to be quite inefficient, therefore, we concentrate primarily on the low-

er bounds, showing matching upper bound only in specific (but quite common)

settings.

Another important structure which cannot be made persistent in this way

is a persistent array, because it is not even a linked structure. We deal with

persistent arrays later in Chapter 5.

Some persistent structures allow not only to modify a version of the struc-

ture, but also to combine several different versions of the structure. A simple

example is catenation of different versions of a persistent list [DST94]. Such

structures are called confluently persistent. In [FK03] a generic method allowing

to create confluently persistent structures is devised, but the resulting struc-

tures are not very efficient. The problem is that the version graph of confluently

persistent structures is not a tree but a directed acyclic graph, which is very

complicated to navigate. Nevertheless, several structures exist, most of them

purely functional, that provide confluent operations with optimal complexity,

e.g., list catenation [DST94], queue catenation [Oka99] or priority queue catena-

tion [BO96].

2.1. PATH COPYING METHOD 17

2.1 Path Copying Method

The path copying method is a simplest method of creating persistent structures

from linked data structures. It was described and named in [ST86], although

many earlier papers independently used this method, for example [Mye83, Mye84,

KM83, RTD83a].

We illustrate the method on a simple example of a singly linked list. In order

to modify for example the third element, we create a node containing the new

value of the third element, and we create a copy of all preceding nodes, updating

the forward pointers accordingly. This situation is illustrated in Figure 2.1.

x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

x1 x2 x
′

3

Figure 2.1: Result of path copying method after modifying list element x3

If we are given any linked data structure, we can therefore create a persistent

variant using a simple rule: when modifying a node, we create its updated copy

and we also create a copy of all nodes that are (direct or distant) predecessors of

this node.1 A slightly more complex example showing modification of a value in

a binary search tree is displayed in Figure 2.2.

x1

x2

x3

x4

x6

x5 x7 x1

x2

x3

x4

x6

x5 x7

x2

x
′

3

x4

Figure 2.2: Result of path copying method after modifying tree element x3

The complexity of the resulting structure can in theory be very bad. Never-

theless, when used on a structure where every node has at most one direct parent

(e.g., linked lists, trees, tries, priority queues), the time complexity of the result-

ing persistent structure operations is the same as the worst-case complexity of the

ephemeral structure operations. That follows from the fact that all predecessors

of a node have to be visited in order to reach the node being modified. Unfortu-

nately, the space complexity of the persistent structure is usually increased – it is

the larger of the original space complexity and original time complexity because

of the node copying.

1These predecessors usually form a path, hence the name of the method.

18 CHAPTER 2. MAKING DATA STRUCTURES PERSISTENT

For illustration, note that updating the i-th element of a linked list takes time

O(i) but also O(i) space. Updating a node in a balanced binary tree has O(log n)

time complexity and also the same space complexity.

The increased space usage is the only disadvantage of this method when the

original ephemeral structure has at most one predecessor for every node. Apart

from that, the resulting persistent structure has optimal time complexity. More-

over, the structure can be implemented without overwriting any memory. This is

of huge importance – the resulting implementations are without side effects and

node fields are written to only once when created. This makes the implementa-

tions simple, lock-free and suitable for purely functional languages, where side

effects are either forbidden or discouraged.

Another important property of the method is that it does not maintain ex-

plicit identification of the structure versions. This is unlike any of the following

methods described in the first part of this thesis – all other methods explicitly

identify versions and modify fields in existing nodes, using the version identifiers

as timestamps, which allows reconstructing all versions of the structure. This

requires side effects and thus locking and is disadvantageous in parallel envi-

ronment. In the path copying method, on the other hand, every version of the

persistent structure is independent of others (except for sharing of read-only parts

of the structure).

Therefore, many functional data structures in use are persistent structures

obtained by the path copying method. For a nice introduction and also advanced

topics like amortized complexity of the persistent structures, see the book [Oka99].

2.2 Making Linked Structures Persistent

In this section we describe the methods of [DSST89] for creating persistent struc-

tures from worst-case linked data structures (see Definition 2.2), sometimes of

bounded in-degree. The whole section is a summary of [DSST89], we only use

the accounting method instead of the potential method for analysing amortized

complexity in the proofs, because we believe it is simpler to follow.

Suppose we have an ephemeral linked data structure defined in Definition 2.2,

where any node contains at most d pointer fields. Access to this structure is

provided by a fixed amount of access pointers, each referring to a so called entry

node. We assume the structure allows two kind of operations, access operations

and update operations. An access operation computes a set of accessed nodes,

which is initially empty. The access operation consists of access steps, each adding

2.2. MAKING LINKED STRUCTURES PERSISTENT 19

a node to the set of accessed nodes. The new node must be either an entry node

or referenced by a pointer in a previously accessed node. A good example of

access operation is lookup in a binary search tree.

An update operation is any sequence of access steps and update steps. In the

update step the structure is modified – either a new node is created and added

to the set of accessed nodes, or a single field of an accessed node is modified. If

a pointer field is modified, its new value must either reference a node in the access

set or be null.

Every update operation creates a new version of the structure. We number the

versions sequentially using integers, starting from 1, so update operation i creates

version i + 1 of the structure. Let m be the total number of update operations.

2.2.1 Partial Persistence

Recall that, according to Definition 2.1, partially persistent structures allow ac-

cess to any version, but only the newest version can be modified.

We describe two methods for creating partially persistent structures. The

first one is the fat node method which makes any linked data structure partially

persistent with O(1) space per update step and O(log m) time complexity of the

access and update step in the worst case. The second one, the node copying

method, applies to any linked data structure with bounded in-degree and creates

partially persistent data structures with worst-case O(1) time complexity of an

access step and amortized O(1) time and space complexity of an update step.

Fat Node Method

In the fat node method, nodes of the persistent structure correspond directly to

the nodes of the ephemeral structure. For each field, all its modifications are

stored, indexed by the version in which the modification happen. Therefore, each

field does not contain only the newest value, but a whole binary search tree with

all the modifications of this field value. An example of a linked list created by

the fat node method is displayed in Figure 2.3.

The nodes can become arbitrarily large, hence the “fat” in the name of the

method. Accessing a field value in a given version requires a lookup in the tree

containing the field modification and can be performed in O(log m) time. In an

update step, a new value of a field is inserted to the tree of its modifications, with

the corresponding version number. Therefore, O(log m) time and O(1) space is

needed.

20 CHAPTER 2. MAKING DATA STRUCTURES PERSISTENT

v4:4

v2:2 v6:6

v1:1 v3:3 v5:5 v7:7

v1:1 v1:1v1:1 v1:1

Figure 2.3: Partially persistent list created using the fat node method. The list

initially contains five elements with value 1. Then the value of the third element

is updated to 2, 3, 4, 5, 6 and 7.

Node Copying Method

The node copying method overcomes the problem of arbitrarily sized nodes

present in the fat node method, but it can be used only if the ephemeral structure

has bounded in-degree.

The basic idea of the node copying method is the following. Each node of the

persistent structure contains a constant number of extra fields, which store mod-

ifications of the node fields. When we update a node, we record the modification

in an extra field, together with the version when the modification happened. If all

extra fields are used, a copy of the node is created, containing the newest values

of the fields, and the update is performed. We also store pointers to the newest

copy of the node in all its predecessors. If there is no space in a predecessor to

store the new pointer, it is copied in the same way.

We now show that this idea leads to a partially persistent structure with

amortized O(1) time and space complexity of an update step.

Each version of the ephemeral structure is identified using the version number

and the value of all access pointers in this version.

Let the maximum number of predecessors of a node in the ephemeral struc-

ture be p. The node of the persistent structure contains the information fields

and d pointer fields, like the node of the ephemeral structure. It also contains p

predecessor pointers, one copy pointer and e extra pointers, which contain modifi-

cations of the pointer fields with corresponding versions.2 The node also contains

a version stamp.

The correspondence between the ephemeral structure and the persistent struc-

ture is the following. Each node of the ephemeral structure corresponds to a fam-

2Same as in [DSST89], we do not allow modifications of the information fields and create

a copy of the node whenever a information field changes. If desired, it is be possible to allow

storing information field modifications.

2.2. MAKING LINKED STRUCTURES PERSISTENT 21

ily of nodes in the persistent structure, represented as a linked list of nodes from

the oldest to the newest, connected using the copy pointers. The last member of

this list is called a live node and represents the newest version of the ephemer-

al node. Any pointer in the persistent structure representing a newest value of

a pointer field in the ephemeral structure is called a live pointer. Every live

pointer points to a live node and we store its inverse in a predecessor pointer

field.

Performing an access step is straightforward. To access a version i of a pointer

field, we first search the extra pointers for a latest modification of the pointer field

with a version at most i. If not found, we use the pointer field itself.

Now consider an update step modifying node x in version i. If the version of

the node is i, we modify the appropriate field. If the update modifies a pointer

field and there is an unused extra pointer, we store the modification in the extra

pointer, together with version stamp i. Otherwise (i.e., if an information field is

being modified or if there are no unused extra pointers), we create x′, a copy of x

with version stamp i, and update the copy pointer of x to point to x′. Then we

fill the information and pointer fields of the node x′ with their newest values and

perform the required update. Because all the pointer fields contain live pointers,

we update the predecessor pointers in all nodes referenced by x′ to point to node

x′ instead of x. In any case, if the update modified a pointer field, we update the

appropriate predecessor pointer in the referenced node.

It remains to update the live pointers pointing to x. We go through the

predecessor pointers of x and for each node we update its appropriate pointer

field to x′ in version i. We perform each update recursively as described. During

recursive updates, it can happen that a live pointer references a node which has

already been copied during this update step, but the pointer itself has not yet

been updated. We handle this situation using copy pointers – when we follow

a live pointer, we check the copy pointer of the referenced node and follow it if it

is nonempty. An example of a linked list created by the node copying method is

displayed in Figure 2.4.

Finally we show that the update step finishes in O(1) amortized time. We

use the accounting method and accumulate a credit of p times the number of

nonempty extra fields in every live node. We give each update a credit of p + 1.

We use one credit to perform the update operation without the recursive calls.

If the modification is stored in an extra field, no node copying took place and

we give the credit of p to the node to compensate for the used extra field. If the

node copying took place, the original node has a credit of p · e which we can use.

22 CHAPTER 2. MAKING DATA STRUCTURES PERSISTENT

1
v1

1
v1

1
v1

1
v1

1

2
v2

v2

3
v3

4
v4

1
v3
v4

v3

Legend:
next
next’

pred
value

copy

next pointer
pred pointer
copy pointer

Figure 2.4: Partially persistent list created using the node copying method. The

list initially contains five elements with value 1. Then the value of the third

element is updated to 2, 3 and 4.

Therefore, we have a credit of p · (e + 1) and need to perform at most p recursive

updates. Consequently, if e ≥ p, we have enough credit to give to the recursive

calls to update and the amortized time and space complexity of the update step

is O(1).

Remark. The node copying method can be simplified in many cases. Consider for

example a singly linked list or a binary search tree. Every node apart from the

root has exactly one predecessor and cannot be accessed without the predecessor

being accessed first. Therefore, there is no need to store the predecessor pointers

and the copy pointers and even the time stamps in the nodes. The node of

the persistent structure then contains in addition to the fields of the ephemeral

structure only one extra pointer field with a version stamp.

2.2.2 Full Persistence

In this section we deal with the harder problem of making linked data structures

fully persistent. We describe two methods analogous to the methods for creating

partially persistent structures, with the same complexities. Namely, the fat node

method makes any linked data structure fully persistent with O(1) space per

update step and O(log m) time complexity of the access and update step in the

worst case. The node splitting method, a variant of the node copying method,

applies to any linked data structure with bounded in-degree and creates fully

persistent data structures with worst-case O(1) time complexity of an access step

and amortized O(1) time and space complexity of an update step.

Navigating the Version Tree

In contrast to the versions of a partially persistent structure which have a natural

linear ordering, the versions of a fully persistent structure form a tree and are

2.2. MAKING LINKED STRUCTURES PERSISTENT 23

only partially ordered. This lack of linear ordering makes it difficult to represent

the versions such that for a given version its nearest predecessor can be found in

a set of versions.

We deal with the problem of navigating the version tree in detail in Chapter 3.

We now describe only the essentials we need in this chapter.

To get around the problem of partial ordering of the versions, we extend it

to a linear ordering. Therefore, instead of a version tree, we a use a version list,

which is a preorder traversal of the version tree, and order the versions according

to this version list.

When we update a field in version v creating version w, at first we insert w

in the version list just behind v. We then lookup the value of the field in version

v and store this value in a version following w in the version list if it exists.

Then we update the field in version w. Therefore, we store the required change

in version w and an undo of this change in the version following w, so the value

of the field is not affected in the versions following w. Consequently, if we want

to know a value of a field in version v, we use the modification which happened

in the version which is the nearest predecessor of v in the version list.

The last issue remaining to be solved is how to compare the versions according

to their order in the version list. This list order problem has been extensively

studied and we describe it in Section 3.3. Notably, we can use the Theorem 3.6

which allows comparing the versions in the version list in constant time, spending

amortized O(1) time to insert the version in the version list. A worst-case variant

of the algorithm is also available and described in Theorem 3.9.

Fat Node Method

The fat node method for obtaining a fully persistent structure is very similar to

the partially persistent case. Each node in the persistent structure corresponds to

a node of the ephemeral structure. For each field, the modifications performed on

this field are stored in a balanced search tree, ordered according to the version list.

When accessing a field in version v, we find the value of the field in version

v or its nearest predecessor in the tree of modifications performed to the field in

question. This can be done in O(log m) time.

To update a field in version v creating a version w, we insert the version w

after version v in the version list. If there is a version following w in the version

list, we lookup the value of the field in version v and store this value in the version

following w. Finally, we add the required modification of the field in version w.

The update step takes O(log m) time and O(1) space in the worst case.

24 CHAPTER 2. MAKING DATA STRUCTURES PERSISTENT

Node Splitting Method

The analogue of the node copying method in the case of fully persistent structures

is the node splitting method. The method involves several technical details which

we do not fully discuss here. An elaborate description of the method can be found

in the original paper [DSST89].

The node of the persistent structure is the same as in the partially persistent

case, i.e., the node contains the information fields, d pointer fields, p predecessor

pointers, a copy pointers, e extra pointers and a node version. Each node of

the ephemeral structure corresponds again to a family of nodes in the persistent

structure, linked via the copy pointers in the order of increasing node versions.

The major difference from the partially persistent case is that all nodes can be

modified. To accommodate this, we store a predecessor pointer for every forward

pointer in the persistent structure, with the same version as the version of the

corresponding forward pointer. We also allow predecessor pointers to be stored

in extra pointer fields. Because access pointers need to be updated sometimes,

we also store a predecessor pointer for every access pointer.

During an access step in version v we search the extra fields for a latest mod-

ification of the required field according to the version list. If such a modification

is not found or if we are accessing an information field, we use the value in the

field itself. Therefore, the access step takes O(1) time in the worst case.

To perform an update step modifying node x in version v creating version w,

we start by inserting the version w into the version list after the version v. If

the version of the node x is w, we update the required field directly. If the

update modifies a pointer field and there is an unused extra pointer, we store the

modification in the extra pointer. Otherwise, let u be the version following w

in the version list. We create two new nodes, xw with version w and xu with

version u, and update the copy pointers accordingly. We fill the forward and

predecessor pointers and information fields of the two nodes according to their

values in node x. We also move the extra fields of x with versions equal or larger

to u to the node xu and update their corresponding inverse pointers (forward

pointers in the nodes referenced by predecessor pointers and predecessor pointers

in the nodes referenced by forward pointers). Then we perform the required

modification of the fields of xw. If the version u does not exist, we proceed the

same, just not creating node xu. In any case, if the update modified a pointer

field, we also update its inverse pointer.

The last step is to make sure a predecessor pointer exists for each forward

pointer and vice versa. During the update, we maintain a list of newly created

2.3. MAKING LINKED STRUCTURES PERSISTENT IN THE WORST CASE 25

forward and predecessor pointer fields. For each such pointer field of node y in

version u we verify that the original inverse pointer can be used to access the

node y in version u (i.e., the inverse pointer is valid in version u) and if it can, we

update the value of that pointer to y in version u. If not, we change the pointer

in y to null.

The updates are performed recursively. If there are no extra fields left in

a node during a recursive update, we split the node by finding a version v and

moving the extra fields with version at least v to the new node, such that both

nodes contain at least e/2 unused extra nodes.

To analyze the time complexity of the update step, we again use the account-

ing method. For every node with less than e/2 unused extra fields we accumulate

a credit of d + p times the number of nonempty extra fields minus e/2. This way

a node with all extra fields used has a credit of (d+p) ·e/2 and the nodes created

by a split of such a node have both zero credit. When updating a field in one

version, we give the update a credit of d + p + 1. We use one credit to perform

all the work, excluding the recursive updates. If an extra field is updated, the

credit of the corresponding node is increased by d + p. If a node is full and splits,

we gain (d + p) · e/2 credit, therefore having a total credit of (d + p) · (e/2 + 1).

After the split we need to update at most d + p inverse pointers corresponding to

forward and predecessor pointers of the newly created node. We conclude that if

e ≥ 2d + 2p, we have enough credit to pay for the recursive calls. Therefore, the

amortized time and space complexity of the update step is O(1) in that case.

2.3 Making Linked Structures Persistent in the

Worst Case

The described node copying and node splitting methods have amortized constant

complexity. That can be disadvantageous in some applications, as discussed in

Section 1.2.1. Therefore, there have been devised several improved method to

bound the worst-case complexity of the update step, which we describe in this

section.

2.3.1 Partial Persistence

Although the node copying method has amortized bounds, in special cases it

can do better. Consider a structure with at most one predecessor, like a singly

linked list or a binary tree. Even if the update step has amortized complexity, the

26 CHAPTER 2. MAKING DATA STRUCTURES PERSISTENT

complexity of the whole operation modifying a list or a tree is worst-case, because

only the predecessor of a modified node can be copied and we have to access these

predecessors anyway to locate the required node. However, in general case, the

worst-case bound on the update step of the node copying method is O(m) if every

node is copied during one update step.

In [Bro96] a method is described that makes partially persistent structures

from linked data structures with bound in-degree, such that the time complexity

of an access step and time and space complexity of an update step is O(1) in the

worst case.

The method is a modification of the node copying method. The difference is

that we do not copy the nodes recursively at the moment they have no free extra

pointers. Instead, after every update step, we choose one live node and perform

the node copying. If we choose the nodes appropriately, then it is possible to

prove that there is a constant bound on the number of used extra pointers in any

node.

We use the following algorithm to choose a node to be copied. We colour the

live pointers in the structure with two colours, black and white. For every live

node, there can be at most one white pointer referencing this node, and we say

a live node is white iff there is a white pointer referencing it. The white pointers

partition the nodes into components, each being a rooted tree of white nodes

with a black root. Also, in each live node we store a queue containing all its

predecessor pointers.

When an update is performed on a node x, we find the root r of the component

where x belongs, possibly x itself. Then we break the whole component down by

changing all white pointers in the component to black. Afterwards we perform

node copying on r. Lastly, if the new copy of r has any predecessor pointers, we

remove a predecessor from a queue, mark the corresponding live pointer white

and return the predecessor to the end of the queue.

The Theorem 3 of [Bro96] proves that using this strategy, at most 2pd + 1

extra pointers are used in any node and shows that this bound is tight.

It remains to show how to implement the described strategy in constant time,

namely how to find the root of the component and change all white point-

ers in a component to black. We represent a component using a component

record which contains a pointer to the root of the component or null. Every

live node has a pointer to a component record and all nodes in one component

share the same component record. If a node points to a component record con-

taining null, the node is black and is the root of the component. Otherwise,

2.3. MAKING LINKED STRUCTURES PERSISTENT IN THE WORST CASE 27

the node is white and the root of the component is stored in the component

record.

Using the component records makes it easy to find a root of a component of

a given node. It also makes possible to break down the component – because

all nodes in the component share the same component record, it is enough to

set the pointer in the component record to null. To mark a black node white,

we inspect the predecessor. If it is black, i.e., if the component record contains

a null pointer, we create a new component record referencing the predecessor

and store this component record in the predecessor. In any case, we then make

the node in question point to the component record of its predecessor.

2.3.2 Full Persistence

In case of full persistence there is no known method that would allow performing

both an access and update step in worst-case constant time.

However, there are several methods improving the worst-case complexity of

fully persistent structures. In [Ram92] the following modification of the node

splitting method is used to obtain two worst-case variants.

We modify the node splitting method to perform one node split after each

update step, instead of splitting the nodes recursively. After we perform the

update, we locate a node containing the most extra fields. If it contains at least

d+p+2 extra fields, we split it and move at least d+p+2 and at most 2d+2p+2

extra fields to the new node. That is always possible, because there are at most

d + p field modifications with the same version. Therefore, in every update step,

we move constant number of extra fields and perform at most d + p pointer

updates in the split and add at most 2 field modifications in the update itself (if

we change a pointer, we must update also the inverse pointer).

Using the Theorem 16 from [Ram92] we can prove, that if in one step we add

at most d + p + 2 extra fields to the whole structure and remove at least d + p + 2

extra fields from the node with the most extra fields, the number of extra fields

in any node is bounded by O((d + p + 2) log m), i.e., by O(log m).3

Therefore, if we store the modifications in a binary search tree, we can perform

an access and update step in O(log log m) time, using O(1) space in the update

step.

The access complexity can be improved on a RAM, at the cost of increasing

the complexity of an update step. We describe the algorithm proposed in [Ram92]

3This result is asymptotically optimal, even if we split the node in halves, see Theorem 3.7.

28 CHAPTER 2. MAKING DATA STRUCTURES PERSISTENT

and fill in some details omitted in the paper. This description is quite technical

and is not used in the rest of the thesis, therefore, it is safe to skip it and continue

with the next section.

To improve the access step complexity, we use a faster structure than a binary

search tree. There are several structures allowing to manipulate a set of integers

faster than in logarithmic time. To be able to use such structures, we have to

assign integer labels to the versions, such that the order of the labels and the

versions in the version list is the same. We describe this list labelling problem in

Section 3.2.

The original description mentions a manuscript of Dietz describing a worst-

case solution of list labelling. We were not able to find it and as far as we

know, such algorithm has never been published (see beginning of Section 3.2.2

for details). Fortuntely, we describe the algorithm in Theorem 3.5, because we

use it in the construction of the persistent array in Chapter 5. The algorithm

maintains for every version an integer label of length O(log m) bits. During an

insertion of a new version, O(log m) labels are changed. This is asymptotically

optimal, as discussed in Section 3.2.2.

We utilize the version labels by storing field modifications in a structure in-

dexed by the version labels. When an new version is created, O(log m) labels are

changed and we have to update the structures containing modifications with this

label. To limit a number of modifications associated with a single version, we use

the extended version list described in Definition 3.2, which guarantees that only

a constant number of modifications is associated with a single version.

The original description uses the small priority queue of [AFK84], which al-

lows searching, inserting and deleting elements in constant time, assuming the

number of elements is asymptotically limited by the number of bits in a word.

When we use a structure with such parameters, the complexity of the access step

is O(1) and an update step takes O(log m) time and O(1) space in the worst

case.

Nevertheless, the small priority queue of [AFK84] is defined in the cell probe

model only and it is not obvious how to modify it to work on a RAM. Indeed,

it has taken a decade before such modification, called a Q-Heap, was devised

in [FW94]. Denoting the word size of a RAM as w, a Q-Heap is a priority

queue working with w-bit numbers, able to perform operations findmin, insert

and delete in worst-case constant time. Nevertheless, Q-Heap can contain at

most w1/4 elements and a precomputation in time linear with the number of

maximum number of elements stored in the Q-Heap must be performed.

2.4. MAKING AMORTIZED STRUCTURES PERSISTENT 29

Despite the size limitation and the precomputation requirement, Q-Heaps al-

low us to manipulate with O(log m) version labels in constant time. To overcome

the size restriction of the Q-Heaps, we store the O(log m) labels in a trie that has

Q-Heaps in every node. Because the Q-Heap can store log1/4 m numbers, we store

log1/4 m bits of the labels in every Q-Heap, therefore, the whole trie has constant

depth and we can manipulate with the labels stored in the trie in constant time.

During the course of the algorithm, the number of modifications stored in

a node increases, but the Q-Heaps have a fixed maximal size. To overcome this

problem, we use a variant of global rebuilding [Ove83a]. We start with Q-Heaps

capable of holding constant number of elements. When the maximum size of Q-

Heaps is equal to log1/4 m, we start rebuilding the Q-Heaps. In the first log1/4 2m

steps we perform the precomputation allowing us to create Q-Heaps with max-

imum size of log1/4 2m. In the following m/2 steps we gradually convert all Q-

Heaps to the new representation. The whole rebuilding finishes in log1/4 2m+m/2

steps, i.e., before the total number of modifications of the whole structure is 2m.

Therefore, the rebuilding finishes before another rebuild is needed.

2.4 Making Amortized Structures Persistent

The complexity bounds of the discussed methods of making persistent structures

do not hold for structures with amortized bounds. That is unfortunate, because

for some problems, the time complexity of a worst-case algorithm is provably

higher than amortized time complexity, see Section 1.2.1. Also the algorithms

with amortized time complexity are often much simpler than the worst-case ones.

There are several equivalent methods for analyzing amortized complexity, the

most suitable in our case is the potential method. In this method, a non-negative

potential P(A) is assigned to every state of a structure A and the amortized cost

of an operation is defined as the actual running time plus the increase in the

potential, i.e., amortized cost = actual running time + P(Aafter)− P(Abefore).

As an example, consider an array which supports adding a new element at

the back. To accommodate the increasing size, we store the array elements in a

memory block of possibly larger size, storing the number of elements currently

present in the array. When adding a new element, we check whether the memory

block used is larger than the size of the array. If so, we only increase the size of

the array and we are done. Otherwise, we allocate a memory block of twice the

size, copy the old array to the new memory block and finally add the new element.

Although the worst-case complexity of adding a new element is linear, we show

30 CHAPTER 2. MAKING DATA STRUCTURES PERSISTENT

that the amortized cost is constant. Consider a potential of the difference between

the numbers of used and unused elements in the memory block. The amortized

complexity of adding a new element when there is unused space in the memory

block is O(1), because the actual running time is O(1) and the potential increases

by 2. When the memory block is full and we copy it to a new block of double

size, the actual running time is Θ(n), but the potential decreases by n, therefore,

the amortized cost is O(1).

The reason why the discussed methods of making persistent structures fail

for data structures with amortized bounds is that we can repeat the operations

with high running time. Consider the situation in the mentioned example when

the array is represented using a memory block of the same size. Adding a new

element has Θ(n) running time. In the original structure, this is compensated

by the following n additions which all have O(1) running time. Nevertheless,

in a persistent structure, we can repeatedly add a new element to the array

represented in a memory block of the same size, causing each such operation to

take Θ(n) time.

Therefore, we explore the possibilities of making data structures with amor-

tized complexities of operations persistent. We are interested in methods that

work without changing the representation of the structure. Naturally, changing

the representation of individual structures might lead to better results, but a

general method would be useful even if it was less effective. However, we show

that such methods in our settings are considerably inefficient and therefore we

focus on the lower bounds and only sketch the upper bounds if available.

Consider a data structure A with an operation update. Let n denote the

size of the structure and suppose that update has amortized complexity. The

update operation can change the size of the structure by a constant amount and

there can be several kinds of the update operation, e.g., in case of a set, an

update can be both addition and removal of an element. Our goal is to obtain

fully persistent variant P of this structure, with either amortized or worst-case

complexity bounds. For the resulting persistent data structure to be effective,

we need some way of controlling the potential of the structure. We consider two

such methods:

• rebuild operation, which rebuilds given A structure and creates an equiva-

lent structure with minimal potential (usually zero),

• undo operation, which is an inverse to update.

We consider these two methods to be most frequently provided by amortized data

structures, notably the rebuild operation.

2.4. MAKING AMORTIZED STRUCTURES PERSISTENT 31

2.4.1 Using the Rebuild Operation

Let A be a data structure with an operation update with amortized complexity

u(n) and a rebuild operation, which rebuilds a given A structure to an equivalent

structure with minimal potential.

We assume that the complexity of the rebuild operation depends only on the

size of the structure. In theory, the rebuild operation could also depend on the

potential of the structure. Nevertheless, the dependence on the size only is very

common (in the shortly mentioned examples, rebuild depends only on the size

and we do not know of alternative implementations which would depend on the

potential). Also, if the rebuild depended only on the potential, a worst-case

variant of the corresponding structure could be created by calling rebuild after

every update, because the potential is only O(u(n)) after one update. Therefore,

we consider only the dependence of the rebuild complexity on the size of the

structure.

We now present several amortized structures with the described rebuild oper-

ation. The first one is an implementation of a queue using two stacks, a folklore

construction (described for example in [Oka99]) frequently used when only singly-

linked lists are available in a computer language. The queue is represented as two

halves, the front half and the rear half, each stored in a stack with the outermost

queue element on top. Adding a queue element is implemented by adding the

element to the rear half, removing a queue element is implemented by removing

the element from the front half. If the front half is empty, the rear half is reversed

and becomes the front half. It is simple to show that if we define the potential

of the queue to be the size of the rear half, both adding and removing a queue

element has constant amortized complexity.

In our settings, the update operation is either adding or removing a queue

element, with constant amortized complexity. The rebuild operation is a gen-

eralization of the operation used in the queue implementation – it reverses the

rear half and prepends it to the front half in Θ(n) time, zeroing the poten-

tial.

Another example are the splay trees [ST85]. The splay trees are binary search

trees providing operations insert, find and delete, all with Θ(log n) amortized

complexity. The potential of a splay tree is a sum of potentials of all its nodes,

and the potential of a node is a logarithm of the size of the subtree rooted in this

node. In our settings, the update operation is either adding, finding or deleting an

element with Θ(log n) amortized complexity, and the rebuild operation recreates

the tree to be perfectly balanced, in linear time.

32 CHAPTER 2. MAKING DATA STRUCTURES PERSISTENT

The well-known disjoint set union-find data structure [Tar83] fits in this mod-

el, if only the path compression is used, not rank by size (otherwise the operations

have logarithmic worst case). The update operation is either find or union with

amortized Θ(log(n)) complexity, and the rebuild operation performs path com-

pression on every node, which can be done in Θ(n) time.

The final example is a fully persistent list created by the node splitting method

of Section 2.2.2. The update operation with constant amortized complexity is a

modification of a list element and the rebuild is a generalization of the node

splitting process – it processes the list elements from back to front, storing mod-

ifications for every element in the smallest number of nodes with zero potential,

i.e., every node is at most half full.

We now show the lower bound of any method which creates a persistent variant

of a given amortized structures with rebuild. Naturally, a large lower bound holds

only for data structures that use amortization heavily. Therefore, we introduce

the following definition.

Definition 2.3. Let A be a data structure with an operation update with amor-

tized complexity u(n) and a rebuild operation with complexity r(n), which re-

builds given A structure to an equivalent structure with minimal potential. For

a real p > 0, we say that structure utilizes potential of order p, if for every size

n there exists an instance of the structure of size n, and for every instance of

the structure of size n, there exists a sequence S of
⌈

p+1

√

r(n)
⌉

update operations

fulfilling the following properties. Let the sequence S be applied to the data

structure, possibly calling rebuild operations at any point in the sequence. Then

• rebuild called at any point takes Ω(r(n)) time, and

• for every m, if m first updates of S are performed without any rebuild, then

there exists an update that decreases the potential by Ω(mp). We call such

an update a discharging update.

Informally, this definition guarantees that there exists a sequence of updates

that builds large potential, the potential can be discharged at any time and the

structure cannot be rebuilt cheaply. This is the case for all mentioned examples

except for the first one, the queue using stacks structure. To illustrate, for splay

trees, the sequence S consists of updates that insert an element greater than all

other tree elements. To discharge the potential, the deepest element in the tree is

accessed. Therefore, a splay tree utilizes potential of order 1. It is easy to show

that also both the mentioned disjoint set union-find data structure and the fully

persistent list also utilize potential of order 1.

2.4. MAKING AMORTIZED STRUCTURES PERSISTENT 33

When a rebuild operation is used, a structure equivalent to the original one

is created, although it is usually different in order to achieve minimum potential.

We extend the notion of equivalence induced by the rebuild operation as follows.

Definition 2.4. We say that two A structure instances are equivalent, when both

are created from the same structure using the same sequence of update operations,

arbitrarily interleaved by rebuild operations for either instance.

We are now ready to present the lower bound of persistent variants of struc-

tures with the rebuild operation.

Theorem 2.5. Let A be a data structure with an operation update with amortized

complexity u(n) and a rebuild operation with complexity r(n). Let this structure

utilize potential of order p, according to Definition 2.3.

If a persistent variant P of structure A is created by representing each version

of P using any equivalent A structure instance (as defined in Definition 2.4), then

the amortized complexity of the update operation on P is Ω
(

r(n)p/(p+1)
)

. In the

common case when p = 1 and r(n) is Ω(n), the lower bound is Ω(
√

n).

Proof. Let n be arbitrary, let r =
⌈

p+1

√

r(n)
⌉

, and let S be the sequence of r

operations from Definition 2.3. We start with any A structure of size n and

repeatedly perform the following procedure.

We sequentially carry out the updates in S and after each one we perform the

discharging update from Definition 2.3. The resulting version tree is displayed

in Figure 2.5.

p0

p1

p2

pr−1

pr

q1

q2

qr−1

qr

Figure 2.5: The version tree after performing the updates from S and discharging

updates. The p0 is any A structure of size n, pi is created from pi−1 by the i-th

update from S and qi is created from pi using the discharging update.

34 CHAPTER 2. MAKING DATA STRUCTURES PERSISTENT

In total we carry out O(r) updates. To analyze the time complexity, we

distinguish two cases depending on whether rebuild was executed. If a rebuild

is performed, it takes Ω(rp+1) time. Otherwise, all the discharging updates take
∑r

i=1 Ω(ip) = Ω(rp+1) time.

We can repeat this procedure as many times as we want, with each O(r) opera-

tions taking at least Ω(rp+1). The lower bound is therefore Ω(rp) = Ω
(

r(n)p/(p+1)
)

.

To illustrate that the conditions of Definition 2.3 are required, consider the

queue using two stacks data structure. This structure does not fulfil Defini-

tion 2.3, because of the following observation: When a rebuild of size n takes

place, the following n updates have worst-case constant complexity. Therefore,

the sequence S required by the Definition 2.3 for all instances of the structure

does not exist for structures created by the rebuild operation.

Motivated by the mentioned observation, we can even create a persistent

variant of this structure with constant amortized complexity. Such persistent

queue implementation is well known and described for example in [Oka99], we

only sketch the algorithm in our settings. We implement the queue using the path

copying method of Section 2.1, with the following addition. When the front and

rear half of the queue have equal size n, we mark this version. If we ever create

a version of the queue by performing n updates to a marked version, we rebuild

the marked version and replay all updates that happened to this version and its

descendants, updating all corresponding queue versions. It is simple to show that

the cost of the rebuild is amortized by the n updates that happened before this

rebuild and that all updates have worst-case constant complexity because of the

earlier observation.

Nevertheless, it is not easy to generalize this construction for other data struc-

tures. For a study of such constructions, see Chapter Amortization and Persis-

tence via Lazy Evaluation of [Oka99].

Apart from the lower bound in the general case, we show an upper bound for

linked structures with bound in-degree. The upper bound does not match the

lower bound, but it is tight in the common case when r(n) is Θ(n) (which is true

for all mentioned applicable examples) up to a multiplicative factor of
√

u(n).

Theorem 2.6. Let A be a linked data structure with bounded in-degree with an

operation update with amortized complexity u(n) and a rebuild operation with

complexity r(n), with r(n) being Ω(u(n)).

If we are able to maintain the value of the potential of the structure during

2.4. MAKING AMORTIZED STRUCTURES PERSISTENT 35

updates and rebuilds and compute values r(n) and u(n), we can create a persistent

variant P of this structure, whose update operation has O
(

√

r(n)u(n)
)

amortized

time and space complexity, where n is the largest size of the structure. In the

common case when r(n) is O(n), the update complexity is O
(

√

nu(n)
)

.

Proof. We obtain the P structure from A using the node splitting method of

Section 2.2.2. The versions of P are A structures with defined potential, therefore,

we define the potential of P to be the sum of potential of all its versions. Let

b(n) = cb

√

r(n)u(n) for a constant cb, whose value we fix later. We maintain two

invariants:

I) Every version of P has potential at most 2b(n).

II) If q is a child of p in the version tree of P , the potential of q is at most the

potential p plus 2cuu(n), where cu is the constant hidden in the asymptotic

complexity of update.

When performing an update operation on the version p of P and obtaining ver-

sion q, we check that potential of q is less than 2b(n). If so, both invariants are

fulfilled and potential of P increases by at most 2b(n).

If the potential of q is not less than 2b(n), we proceed as follows. We denote

the b(n)/cuu(n)-th predecessor of q as r. The invariant II) guarantees that it

exists and has potential of at least b(n). We rebuild the version r and for every

versions s, t violating the invariant II) we replace t by a structure created by

performing an update operation to s. We perform these updates in a DFS order

from the node r.

The potential of any node created by an update operation has decreased by

at least cuu(n), thus paying the cost of the update. Moreover, the potential of all

b(n)/cuu(n) nodes on the path from r to q decreased by at least b(n), therefore,

the resulting potential decrease of P is at least b2(n)/cuu(n) = (c2
b/cu)r(n), thus

amortizing the cost of the rebuild operation for large enough cb.

Therefore, the amortized cost of an update operation is O
(

√

r(n)u(n)
)

. Un-

fortunately, this is both time and space complexity – the rebuild operation cannot

overwrite the original structure, because other versions of P might share parts

of the original structure and it could be the case, that these versions will not be

modified, because they might not violate invariant II).

2.4.2 Using the Undo Operation

Since the persistent variants of amortized data structures with rebuild operation

are not very effective, we considered alternative operations that can control the

36 CHAPTER 2. MAKING DATA STRUCTURES PERSISTENT

potential and are frequently provided by amortized data structures.

In quite a few cases the amortized data structures provide an operation undo

that reverts the effect of the update operation. This operation has usually the

same amortized complexity as the update operation. An example of an amortized

structure with undo operation are the splay trees [ST85] – inverse of an insert is

a delete, inverse of a delete is an insert and inverse of a find operation is identity.

The undo operation can be used to provide more effective persistent variants

of amortized structures – if an update decreases potential considerably, the undo

operation can be used to decrease potential of many versions of the structure.

Consider for example the queue using two stacks data structure from Section 2.4.1.

This structure can be adapted easily to support the undo operation by adding a

counter expressing how many elements from the front half should be considered

removed. To undo deletion of a queue element, we add it to the front half. To

undo insertion of an element which is on the top of the rear half, we remove it.

To undo insertion of an element which has been already moved to the bottom

of the front half, we increase the counter representing the number of elements

considered deleted from the bottom of the front half.

We now sketch how a persistent variant of this structure can be created, with

amortized O(
√

n) complexity of update, where n is the largest size of the queue.

We assign a potential of
√

n to a queue version if the rear half is non-empty,

otherwise the potential is zero. To implement update on the persistent structure,

we use the original update operation if it has worst-case constant complexity.

The only situation in which the original update has non-constant complexity is

when the front half of the queue is empty. In this case, we distinguish two

possibilities. If the current queue version has at least
√

n predecessor versions

with non-zero potential, we perform the required update directly in O(n) time

and create a queue version with zero potential. We then use undo to replace all

mentioned predecessor versions with non-zero potential by equivalent ones of zero

potential, decreasing the potential of the whole structure by at least n. If only less

than
√

n predecessor versions with non-zero potential exist, we locate the nearest

predecessor version with zero potential and replay all updates on the predecessor

versions of the current queue version with non-zero potential, decreasing the rear

half length of the current queue version to at most
√

n in O(
√

n) time, allowing

us to perform the required update with O(
√

n) time complexity.

However, analysing undo operation in general case is more challenging than

analysing rebuild – first, undo gives no control over the value of the potential, and

second, the potential of later versions can influence the potential of earlier versions

2.4. MAKING AMORTIZED STRUCTURES PERSISTENT 37

because of the undo operation. We were not able to devise any general method of

creating persistent variant of a given structure A with an undo operation, which

would have better complexity than O(b) per update operation, where b is the

maximum value of the potential of the structure.4

Analogously to structures with rebuild operation, we define an equivalence of

A structure instances.

Definition 2.7. We say that two A structure instances are equivalent, when both

are created from the same structure using a sequence of update and undo opera-

tions, such that every undo operation cancels the nearest uncancelled preceding

update operation, and the subsequences of uncancelled updates are the same for

both instances.

We now show that an efficient persistent variant cannot be devised for every

amortized structure with undo operation. Similarly to structures with rebuild

operation, we define the properties of structures with undo for which the lower

bound holds.

Definition 2.8. Let A be a data structure with an operation update with amor-

tized complexity and an undo operation with amortized complexity, such that

undo is an inverse of update. For an integral b, we say that structure utilizes

potential of b, if the following holds. There exist an initial instance of the struc-

ture A and a sequence S of O(b) updates, such that when the sequence S is

applied to the initial instance, it creates a sequence of b versions of the data

structure with potential at least b. For every instance of the data structure

equivalent to any version created by S, undo does not decrease potential, and

for every 0 < i ≤
√

b there exists a variant of update that decreases potential to

min(current potential, b− i
√

b) in time Ω(1 + potential difference).

Theorem 2.9. Let A be a data structure with an operation update with amortized

complexity and an undo operation with amortized complexity, such that undo is

an inverse of update. Let this structure utilize potential of b according to Defini-

tion 2.8.

If a persistent variant P of structure A is created by representing each version

of P using any equivalent A structure instance (as defined in Definition 2.7), then

the amortized complexity of the update complexity on P is Ω(
√

b).

Proof. Using the initial instance of A and the sequence S from Definition 2.8, we

create the data structure versions p1, p2, . . . , pb of potential at least b, and perform
4Creating a persistent structure with O(b) complexity is trivial, because O(b) is the worst-

case complexity of an update operation.

38 CHAPTER 2. MAKING DATA STRUCTURES PERSISTENT

the following
√

b phases. In the phase x we perform an update operation to the

versions pb−i
√

b−x for i from 0 to
√

b − 1, creating versions p′
b−i

√
b−x

. Using the

assumptions of Definition 2.8, every update during phase x decreases potential to

b− x
√

b and the undo operation does not decrease the potential.

One way to perform these operations is as follows. Consider a block Bk

which consists of versions pk
√

b, pk
√

b+1, . . . , pk
√

b+
√

b−1. The update operations in

this block operate on nodes from the last one to the first one. After the update

operation on pj, we perform an undo operation on the result p′
j and then another

undo operation to get a structure equivalent to pj−1 and we replace pj−1 by it.

This way, every update operation decreases the potential by
√

b, and the time

complexity of all the phases is Ω(b
√

b).

On the other hand, it is obvious that if the version pj in block Bk is constructed

by undo operations from a version in another block Bi>k, its potential is not lower

than when pj is created by an undo operation from pj+1. This fact relies on the

order in which we process the nodes in the block and also on the fact that the

blocks consist of
√

b nodes.

The same reasoning apply to the case when the version pj in the block Bk

is constructed by update operations from a version in another block Bi<k – its

potential cannot be decreased this way because the update operations can increase

potential by one and every block consists of
√

b nodes.

Therefore, it does not help to derive a version pj from a different block than

the one pj belongs to, and the initial scheme of performing the operations is

optimal, needing Ω(b
√

b) time for |S| + b = O(b) update operations. The whole

procedure can be repeated indefinitely.

2.5 Chapter Notes

The beginning of this chapter (Sections 2.1, 2.2 and 2.3) is a summary of known

general methods for creating persistent variants of worst-case linked data struc-

tures, compiled from [DSST89, Bro96, Ram92]. Our contribution is Section 2.4,

where we explore the efficiency of creating persistent structures from ephemeral

structures with amortized bounds. These are original results.

Chapter 3

Navigating the Version Tree

The versions of fully persistent structures form a tree. Therefore, the versions are

only partially ordered. The lack of linear order makes it difficult to work with

the versions, e.g., to find a predecessor of a version within a given set of versions.

As suggested by [DSST89] or [Die89], we can extend the partial ordering of

the versions to a total ordering of the versions, i.e., linearize the version tree and

obtain a version list. A suitable method of linearizing the version tree is described

in Section 3.1.

Having a linear ordering of versions, we need to be able to compare them as

fast as possible. This problem, called the list order problem, has a long history and

has been addressed by several researchers, e.g., [Die82, Tsa84, DS87, BCD+02].

In the list order problem, a linked list is maintained. A new node can be inserted

to the list at any place and order of two nodes in the list can be compared.

An algorithm similar to [DS87] with worst-case O(1) complexity for both the

operations is described in Section 3.3.

The list order problem is tightly connected to the list labelling. In the list

labelling, a linked list is also maintained. Nevertheless, instead of an operation

comparing two nodes, the goal is to assign integer labels to the nodes, such

that the order of the nodes in the list and the order of the node labels is the

same. As with the list order problem, asymptotically optimal solutions are known.

We elaborate on the list labelling in Section 3.2.

Using the list order problem, we can store an ordered set of nodes in a search

tree. When we use the list labelling, we can take advantage of the integer labels

and store an ordered set of nodes in an asymptotically more efficient structure

for maintaining an integer set. Nevertheless, this does not always pay off – in the

list labelling, the lower bound on the number of relabellings after an insertion to

the list is Ω(log n). In the Chapter 5 we describe a particular situation where this

39

40 CHAPTER 3. NAVIGATING THE VERSION TREE

can be circumvented and it is profitable to use the node labels as keys in a fast

data structure.

3.1 Linearizing the Version Tree

The most simple way to linearize the version tree is to use its preorder traversal,

as in [DSST89].

Definition 3.1. The version list is a preorder traversal of the version tree.

We can maintain the version list in the following fashion. When a version w

is created from version v, we insert w in the version list just after v. It is simple

to prove by induction that the resulting list is the preorder traversal of the tree.

Nevertheless, in some cases the version list is not suitable. The problem is

that when inserting a new version to the version list, an update to the versions

following the version being inserted is performed. Therefore, the number of up-

dates to a version cannot be bounded. If that is an issue, we use an extended

version list. Note that although the extended version list is used in several papers,

e.g., [Die82, Die89, Ram92], there is no agreement on the term itself.

Definition 3.2. The extended version list is a combination of preorder and pos-

torder traversal of the version tree. Specifically, for each version v in the version

tree there are two nodes (versions) in the extended version list. We denote these

nodes as v+ and v−. The v+ is identified with v and v− is used for technical

purposes. The whole extended version list is a result of a DFS traversal where

v+ is emitted when entering version v and v− is emitted when leaving version v.

Maintaining the extended version list is similar to maintaining the plain ver-

sion list. When a version w is being created from version v, we insert w+ just

after v+ and w− just after w+. Once again, we can prove the correctness of this

approach by induction.

With this definition, the mentioned problem of unbounded updates of one

version is avoided – when inserting version v, we create two versions v+ and v−

in the version list and perform updates only on these two versions.

3.2 List Labelling

In the list labelling we maintain a linked list. Nodes can be inserted anywhere in

the list. The goal is to assign integer labels to all nodes, such that the order of

3.2. LIST LABELLING 41

the labels is the same as the order of the nodes in the list. The label of node n

is denoted as ℓn.

The performance of list labelling depends on the range of the labels we can

use. In this section we summarise known results and in detail describe the cases

that we will use later. We also present an algorithm solving the worst-case list

labelling using polynomial labels, for which no solution has been published.

3.2.1 Exponential Labels

When we can use exponentially many labels and we know the maximum number

of the nodes in the list, there exists a simple algorithm which does not require

any relabellings. Such an algorithm is useful if the list we are interested in has

length O(log n) – then the labels have O(log n) bits and fit in a constant number

of machine words.

Theorem 3.3. When we can use exponentially many labels and we know the

maximum size of the list in advance, we can solve the list labelling without any

relabellings.

Proof. Let n be the maximum size of the list. We create two auxiliary nodes and

assign them labels 0 and 2n. These nodes always stay at the beginning and at

the end of the list.

When a new node n is being added between the nodes m and o, we set

ℓn = (ℓm +ℓo)/2, i.e., the new label is in the middle of the range where it belongs.

It is easy to prove by induction that after adding i nodes (disregarding the

two auxiliary ones), the difference of labels of any two adjacent nodes is divisible

by 2n−i. Therefore, we can insert n nodes without relabelling.

3.2.2 Polynomial Labels

Frequently the labels can be chosen from a range with polynomial size with respect

to the size of the list. In other words, the labels have O(log n) bits, where n is

the size of the list.

An algorithm using O(n log n) relabellings for n list insertions, i.e., with amor-

tized O(log n) relabellings per operation, is described in [Die82] and in [Tsa84].

A much simplified variant is devised in [BCD+02]. We describe the latter algo-

rithm in Theorem 3.4.

42 CHAPTER 3. NAVIGATING THE VERSION TREE

A worst-case algorithm needing at most O(log n) relabellings per every insert

is known to exist – it is implied by the following connection of list labelling to

weight-balanced trees, and is also mentioned in [Ram92] and [BCD+02]. Never-

theless, as far as we know, it has never been published. In [Ram92] an unpublished

manuscript of Dietz is referenced when talking about the algorithm. In [BCD+02]

authors claim to describe the algorithm in the full paper, but according to per-

sonal communication,1 it has not been finished yet. Therefore, we present our

worst-case algorithm in Theorem 3.5, and utilize it further in the persistent array

construction.

All mentioned algorithms are asymptotically optimal – a lower bound on the

number of relabellings needed to perform n list insertions is Ω(n log n). A proof

appeared in [DSZ05], but is seriously flawed, as acknowledged by one of the

authors.2 Nevertheless, the proof has been fixed in a recent paper [BBC+12].

Connection to Weight-Balanced Trees

As described in [BCD+02], there is a close connection between list labelling and

weight-balanced trees. A binary representation of an integer label can be con-

sidered a path in a binary tree, 0 meaning left child and 1 meaning right child.

Obviously, a strategy for maintaining tags with O(log n) bits with amortized re-

label cost f(n) yields a strategy for maintaining a balanced binary tree of height

O(log n) with amortized insertion time of O(f(n)).

The straightforward converse is false, because a single rotation of the root of

the tree can be performed in O(1) time, but changes paths to all leaves, thus

causing O(n) relabellings. But if we define a weight of a node to be the size

of its subtree and a weight cost of an operation to be the sum of weights of

modified nodes, we get following result: Any balanced tree structure of maximum

degree d and height h with amortized or worst-case weight cost f(n) for insertions

yields a strategy for list labelling with amortized or worst-case cost O(f(n)),

respectively. The resulting labels use h⌈log2 d⌉ bits.

Many rotation-based trees like red-black trees or AVL trees have O(n) weight

cost insertions and deletions. Yet some structures with O(log n) weight cost

insertions exist, like BB[α] trees [NR72], skip lists [Pug89] or weight-balanced

B-trees [AV96]. These structures can be used to obtain a O(log n) solution to

the list order problem, both amortized or worst-case, depending on the structure

used.

1Personal communication with Martin Farach-Colton and Erik Demaine, July 2013.
2According to [BBC+12].

3.2. LIST LABELLING 43

Amortized Solution of List Labelling with Polynomial Labels

We describe an algorithm with amortized complexity from [BCD+02]. The ad-

vantage of this algorithm is that it does not explicitly maintain a tree, only the

list itself.

Theorem 3.4. The list labelling with polynomial labels can be solved with amor-

tized O(log n) relabellings per insert.

Proof. We call any interval j · 2i, j · 2i + 1, . . . , j · 2i + 2i − 1 a range of size 2i.

These ranges correspond to nodes of perfect binary tree whose number of leaves

is a power of two.

Let 1 < δ < 2 be a constant. We say a range of size 2i is in overflow if it

contains more than δi labels.

Consider inserting a new node in the list between nodes n and m. If ℓn + 1 <

ℓm, we assign it the label ⌊(ℓn + ℓm)/2⌋. If ℓn + 1 = ℓm, we have no label to

assign to the new node. We therefore find (by traversing the list in appropriate

directions) the smallest range containing ℓn which is not in overflow. Then we

relabel the labels contained in this range evenly. Consequently, the range of size 2

containing ℓn is not in overflow and we have a label to assign to the inserted node

(possibly after decreasing ℓn by one, if it is last in the discussed range).

It is easy to check that the resulting labels have at most ⌈logδ n⌉ bits. To

show that the amortized complexity of insert is O(log n), consider relabelling

a range of size 2i. This relabelling takes O(δi) time and after such relabelling,

both child subranges contain δi/2 labels. Another relabelling of the whole range

occurs when one of these children contains more than δi−1 labels, which happens

after at least δi−1(1 − δ/2) inserts. Therefore, it is enough for a given range to

charge a constant time for each insert belonging to it. Because a label belongs

to O(logδ n) ranges, the result follows. For experiments with different δ see the

original paper [BCD+02].

Worst-Case Solution of List Labelling with Polynomial Labels

We now describe an algorithm performing O(log n) relabellings in the worst-case.

Theorem 3.5. The list labelling with polynomial labels can be solved with O(log n)

relabellings per insert in the worst-case.

Proof. Our algorithm is based on a weight-balanced B-tree described in [AV96],

which we adapt for our purposes.

44 CHAPTER 3. NAVIGATING THE VERSION TREE

The leaves of the tree are at the same depth and weight of a node of depth i

is between 2i−1 and 2i+1, where a weight of a node is the number of leaves in its

subtree. Consequently, the height of the whole tree is at most 1 + ⌊log2 n⌋ and

every node has at most eight children, because the weight of a child is at least

one eighth of the weight of its parent.

The children of a node are assigned 10-bit labels, such that the order of the

children and the order of the labels is the same. The label of a leaf is a catenation

of labels of the nodes on the path from the root to the leaf itself. We explicitly

maintain both the child labels and the leaf labels.

We show that we can insert leaves to the tree and maintain the leaf labels,

such that only O(log n) of them are changed during an insertion, and the ordering

of the leaves and the labels of the leaves is the same.

When inserting a new leaf, we insert it to the parent of its sibling. Then

we check the ancestors of the new leaf, starting from the lowest level, and if we

find one with too big weight, we split it. To split a node v of depth i we divide

its children in two groups, the left children and the right children, such that the

weights of those two groups are as close as possible. Then we create nodes vl with

the left children and vr with the right children, insert these nodes to the parent

of v instead of v and continue by checking the weight of the parent of v.

If we split the children of v equally, the weight of both vl and vr would be 2i.

Nevertheless, there can be a child of weight 2i, half of it missing in one group and

half of it surplus in the other group, so the weight of vl and vr is in the range

between 2i − 2i−1 = 2i−1 and 2i + 2i−1 = (3/2)2i. Therefore it is in the required

range.

If a split has happened, we need to update the child labels and also the leaf

labels. We update the child labels immediately, storing both the original and

updated labels for every child node. Nevertheless, the leaf labels are updated

gradually. Of course, the order of the labels and the order of the leaves is preserved

all the time.

We start by describing the child labels. The first child is assigned the label

1 000 000 0002. When a child v is split into vl and vr, the label of vl is the average

of the label of the left sibling of v (or 0 if it does not exist) and the label of v;

the label of vr is the average of the label of v and the label of the right sibling of

v (or 10 000 000 0002 if it does not exist). Because a node has at most 8 children,

8-bit labels are enough. We elaborate on the two remaining bits later.

When a node v splits, we cannot update all the leaf labels in its subtree.

Instead, we start two relabelling processes. The left relabel relabels the leaves in

3.2. LIST LABELLING 45

the subtree of vl and the right relabel relabels the leaves in the subtree of vr. We

describe the left relabel in detail, the right relabel is analogous.

To relabel a leaf of vl, 20 bits of the label have to be changed – the 10 bits

corresponding to v change to the label of vl and the 10 bits corresponding to the

label of the child of v containing this leaf change to the label of the child of vl

containing this leaf. When we split v, we associate the left relabel with vl (and

right relabel with vr) and during following inserts into any subtree of vl we relabel

4 leftmost not relabelled leaves. Because the weight of vl is at most (3/2)2i, there

must be at least 2i−1 inserts into vl before the next split, so we relabel all leaves

in the subtree of vl before the vl splits.

Notice that during the left relabel, both the original and the new label of any

leaf preserve the ordering – there are no other leaf labels in between. Moreover,

because the label changes are local and involve only two levels of the tree, rela-

bellings on different levels do not interfere but in one case – if a split happens to

a node whose parent is undergoing a relabel.

If vl is undergoing left relabel and a child w of vl splits, we cannot label the

leaves in the subtrees of wl and wr using the updated child labels of wl and wr

in vl, because that would corrupt the ordering of the leaf labels with respect to

the not yet relabelled leaves. Instead, for the not yet relabelled leaves, we use

the original child label w had as a child of v. Because children of vl can split at

most twice before the left relabel finishes (they split after at least 2i−2 inserts),

two spare bits of the original child labels are enough to solve this.

We recapitulate the insert operation. After inserting the new leaf to appro-

priate place, we successively check its ancestors. If there is a left or right relabel

associated with an ancestor, we perform 4 its relabellings. If the weight of an

ancestor v is too big, we split it and associate the left and the right relabels with

vl and vr.

The last problem we have to deal with is splitting of the root node. If the root

node r splits into rl and rr, we add a level to the tree – we create a new root node

r0 and add rl and rr as its children. Nevertheless, r has no child label, which is

the same as if it has zero label. We therefore have to associate a right relabel

with rl, but only after all the leaves of rr are relabeled. We do this by associating

a special right relabel to rr working twice as fast as the normal relabel. When

it finishes, we associate a right relabel to rl which also works twice as fast. This

way, a relabel is done before any of the rl and rr split again.

To conclude, the leaf labels use 10(1 + ⌊log2 n⌋) bits, preserve the ordering of

leaves and, during an insert, at most O(log n) leaf labels need to be changed.

46 CHAPTER 3. NAVIGATING THE VERSION TREE

3.2.3 Linear Labels

For completeness, we also present lower and upper bounds of list labelling using

labels from range of size linear in the number of list elements, although we do

not use these bounds further below.

In some cases, the polynomial labels are too large. Consider the dense se-

quential file maintenance problem – we maintain a file consisting of a sequence

of fixed size records, which we want to insert and delete at any place in the file.

For these operations to be efficient, we allow the file to be sparse – to store also

unused records in the file, provided the size of the file is linear in the number of

used records. This corresponds closely to list labelling – the label of the i-th node

can be considered an index of the i-th record in the sparse file.

When the labels are bounded by c ·n for c > 1, an algorithm using O(n log2 n)

relabellings for n list insertions, i.e., with amortized O(log2 n) relabellings per op-

eration, is described in [IKR81]. This algorithm was made worst-case by [Wil92],

using at most O(log2 n) relabellings per an insertion to the list.

Also the case of labels bounded by c · n for c = 1 has been explored. List

labelling with this label bound is known as perfect labelling. An algorithm using

O(n log3 n) relabellings for n list insertions is presented in [BS07]. The worst-case

variant of this algorithm does not yet exist, as far as we know.

All mentioned algorithms are optimal – matching lower bounds for labels

bounded by c · n for both c > 1 and c = 1 are proven in [BKS12].

3.3 List Order Problem

As in the list labelling, in the list order problem we maintain a linked list. Nodes

can be inserted anywhere in the list. Our goal is to be able to compare two nodes

with respect to their order in the list, most preferably in constant time.

The list order problem can be solved easily by list labelling. We maintain

labels associated with the nodes of the list and use these labels to perform the

comparison of the nodes. Unfortunately, this results in the Ω(log n) complexity

of the insert operation, as described in the previous section.

Nevertheless, there are better algorithms if we do not require explicit labels

and use only the comparison function. A solution with O(log∗ n) worst-case

complexity of insert was described in [Die82]. An improved algorithm with O(1)

amortized complexity of insert was published by [Tsa84]. Ultimately, a solution

with worst-case O(1) complexity of insert was devised in [DS87].

In this section we describe both the amortized and worst-case constant time

3.3. LIST ORDER PROBLEM 47

solution. The algorithm is based on [DS87], but is slightly simplified, because

in the worst-case it uses the list labelling with polynomial labels (Theorem 3.5),

instead of the list labelling with linear labels from [Wil92]. In both algorithms we

also describe in detail how is the ordering of nodes represented. The representa-

tion details do not appear in any previous descriptions of the list order problem,

and allow us to use the described algorithms in the persistent array construction

in Chapter 5, instead of more complicated variants devised by Dietz in [Die89].

Amortized Solution of List Order Problem

Theorem 3.6. We can solve the list order problem on RAM with amortized O(1)

time complexity of the insert operation.

Specifically, we can attach labels to the list nodes fulfilling the following prop-

erties. Each label consists of two parts, the prefix label and the sublist label, each

consisting of O(log n) bits. There are Θ(n/ log n) prefix labels, each shared by

O(log n) node labels. During an insert, amortized O(1) prefix labels and sublist

labels are changed.

Proof. We solve the list order problem by using the list labelling with polynomial

labels. To overcome the O(log n) complexity of list labelling, we use a two-level

structure.

We split the list into continuous sublists, each consisting of Θ(log n) nodes.

Specifically, each sublist consists of at least log n and at most 2 log n− 1 nodes.

Whenever we insert a node, we insert it to appropriate sublist, and if it now con-

tains 2 log n nodes, we split the sublist into two, each consisting of log n nodes.

Each node is assigned a label in its sublist, called the sublist label. The sublist

label has O(log n) bits and is assigned using algorithm requiring no relabelling

described in Theorem 3.3. The sublist labels are updated only during a split of

a sublist. On a RAM machine, we can manipulate with these labels in constant

time, therefore, we can split a sublist and assign new labels in O(log n) time.

Because a sublist is split only every log n insertions, the amortized number of

sublist label changes is O(1) per insertion.

The whole sublists are labelled with polynomial labels, called the prefix la-

bels, using the algorithm from Theorem 3.4 with amortized O(log n) relabellings.

When a sublist is split, one of the resulting sublists keeps the prefix label and the

other sublist gets a new label. During the n insertions, there are n/ log n sublist

splits, so we need to label n/ log n sublists, for which we need a total number of

O((n/ log n) log(n/ log n)) = O(n) prefix label changes. In other words, there is

48 CHAPTER 3. NAVIGATING THE VERSION TREE

amortized O(1) prefix label changes per insertion. Altogether, there is amortized

O(1) number of prefix labels and sublist labels changes per insertion.

To perform a comparison of two nodes, we first compare their prefix labels,

and if they are the same, we compare also the sublist labels. This is correct, be-

cause sublists always contain continuous sequence of the original list nodes.

Worst-Case Solution of List Order Problem

The worst-case solution is based on the same idea as the amortized solution – we

split the list into n/ log n sublists and label the sublists using prefix labels and

the nodes in the sublists using sublist labels. The labelling of sublists is done

using the worst-case list labelling described in Theorem 3.5.

The problematic part is maintaining the sublists. The amortised solution per-

forms a split whenever it is needed. Nevertheless, to achieve worst-case bounds,

at least Ω(log n) insertions must take place between two sublist splits, so that the

O(log n) relabellings of the prefix labels caused by the first sublist split can be

performed.

Therefore, we use the following algorithm for maintaining the sublists. Every

log n insertions, we choose the sublist containing most nodes and split it. This

way, we maintain n/ log n sublists and are able to perform the O(log n) prefix

label changes caused by a sublist split during the following O(log n) insertions,

changing O(1) prefix labels at a time.

The question is whether this algorithm gives any upper bound on the size of

the sublists. This turns out to be true.

Theorem 3.7 (Theorem 5 from [DS87]). Consider the following pebble game.

In the game, there are n piles, initially empty, represented by nonnegative real

numbers x1, . . . , xn. The game proceeds by repeating the following steps:

• The adversary chooses nonnegative real numbers a1, . . . , an such that the

sum of them
∑

i ai = 1 and sets xi ← xi + ai.

• We find index i such that xi is maximal and set xi ← 0.

Then for any strategy of the adversary, no xi ever exceeds the value Hn−1 + 1,

where Hn =
∑n

i=1 i−1 ≤ ln n + 1, and this bound is tight.

To apply to our case, we use the following corollary.

Corollary 3.8 (from [Ram92]). In a variant of pebble game where we can only

perform xi ← αxi instead of zeroing, where 0 ≤ α < 1, all xi are bounded by

(1− α)−1(Hn + 1).

3.3. LIST ORDER PROBLEM 49

Proof. Let Mα be the yet unknown bound on all xi. We define another pebble

game with yi = max(xi − αMα, 0). The key observation is that after performing

xi ← αxi, we have yi = 0. Thus we play zeroing game on yi, consequently, all yi

are bounded by Hn + 1 and the result follows.

In our case the splitting of the sublists is just a pebble game with halving,

where the adversary adds log n to the piles per turn. Although each split creates

new nonempty sublist, we see from the proof of the Corollary that in the corre-

sponding zeroing game, the sublist is represented by an empty pile. Therefore,

when adding a sublist, we add an empty pile to the zeroing game and pretend

that it was already there, just not used by the adversary. Accordingly, during

n insertions, the size of any sublist is bounded by O(log2 n).

We are now ready to present the worst-case algorithm for list order problem.

Theorem 3.9. We can solve the list order problem on RAM with O(1) worst-case

time complexity of the insert operation.

Specifically, we can attach labels to the list nodes fulfilling the following prop-

erties. Each label consists of three parts, the prefix label and two sublist labels,

each consisting of O(log n) bits. There are Θ(n/ log n) prefix labels, each shared

by at most O(log2 n) node. During an insert, O(1) prefix labels and sublist labels

are changed.

Proof. We maintain the continuous sublists as described – every log n insertions,

we split the largest one, obtaining the bound O(log2 n) on the size of the sublists.

We label the sublists using so called prefix labels, by using the worst-case list

labelling algorithm from Theorem 3.5. It is easy to modify that algorithm to

perform an insertion in O(log n) phases, each taking O(1) time and preforming

O(1) relabellings, by processing a constant number of ancestors of the inserted

node at a time.

What remains to be done is to label the nodes in the sublists. We cannot

use the same sublist representation as in the amortized case, because the sub-

lists contain up to O(log2 n) elements and we cannot operate on numbers with

O(log2 n) bits in constant time. Instead, we represent a sublist as a two-level tree

with nodes (root and its children) of degree O(log n) and leaves representing the

list elements. We label the children of a given node using the algorithm requiring

no relabelling described in Theorem 3.3. The label of a leaf then consists of the

two child labels of its predecessors, each of length O(log n).

We maintain the sublists in a similar fashion as in Theorem 3.5. To insert an

element into the sublist, we insert it to the corresponding bottom node v. When

50 CHAPTER 3. NAVIGATING THE VERSION TREE

this node is of size log n, we create two nodes vl and vr, which we insert to the

root node before and after v. During the next 1
3

log n insertions to any of v, vl

and vr, we move two leftmost children of v to vl and two rightmost children of v

to vr. After these 1
3

log n insertions, v becomes empty and both vl and vr are of

size at most 5
6

log n.

Every log n steps we also have to split the largest sublist. In order to locate

the largest one, we maintain a doubly-linked ascending list containing sizes for

which there exists a sublist, and for each size, we maintain a doubly-linked list

containing sublists of this size. We can easily update this structure during the

sublist size changes (i.e., when increasing or decreasing sublist size by one and

when adding an empty sublist) in O(1), and the structure allows us to locate the

largest sublist in constant time.

To split the largest sublist, we split the root node the same way as we split its

children. Therefore, when splitting sublist s, we create sl and sr and during the

following log n insertions (not necessarily to this sublist), we move the children

of s to both sl and sr.

Nevertheless, we need the prefix labels of sl and sr immediately after we

start splitting s. Therefore, in the top-level structure containing the prefix la-

bels, we keep spare prefix labels between any two used prefix labels and before

the first and after the last used prefix label. When we start splitting s, we

already have prefix labels for sl and sr prepared. During the next log n inser-

tions, we insert two spare prefix labels in the structure, one before sl and one

after sr, and we have all spare prefix labels prepared before the following sublist

split.

There are several constants hidden in the asymptotic complexities which we

did not explicitly quantify, e.g., the bound on the size of the sublists, but doing

so is straightforward and does not help understand the algorithm, so we omit

those.

3.4 Chapter Notes

This chapter defines the well-known list labelling and list order problems and de-

scribes optimal solutions for these problems, compiled from [DS87] and [BCD+02].

Our contributions are the following.

• An algorithm for worst-case list labelling in polynomial space from Theo-

rem 3.5, presented in [Str09]. As far as we know, no such algorithm has

been published (see beginning of Section 3.2.2 for details).

3.3. LIST ORDER PROBLEM 51

• Using this algorithm, we provide a slightly simpler solution to the worst-

case list order problem in Theorem 3.9, presented also in [Str09]. The

original solution from [DS87] uses the worst-case list labelling in linear space

from [Wil92], which needs O(log2 n) relabellings per insertion.

• Both our amortized and worst-case solutions to list order problem in The-

orems 3.6 and 3.9 provide detailed description of labels associated with the

list nodes. This characteristics of the labels structure allows these algo-

rithms to be used in the persistent array construction of Chapter 5, where

an ordinary list order problem solution could not be used otherwise.

52 CHAPTER 3. NAVIGATING THE VERSION TREE

Chapter 4

Dynamic Integer Sets

Several persistent structures identify versions using bounded integers and we can

improve the complexity of these structures, if we can efficiently manipulate sets

of bounded integers.

In this chapter we describe several data structures capable of representing a set

of n nonnegative integers smaller than a known bound U . The structure must

provide insert, search and delete operations. A search for an integer key x should

return the maximum key in the set which is smaller than or equal to x. This

operation is sometimes called the predecessor and its opposite is the successor

operation.

Quite commonly, some data is associated with the set elements. In this case,

the structure is in fact a finite map from the integer keys to associated values.

Associating data with set elements is usually trivial (it is so in all structures

discussed in this chapter) and does not influence the representation of the set,

therefore, we do not distinguish set and maps and talk about sets only in this

chapter.

A straightforward implementation of a dynamic integer set is any balanced

binary tree, such as an AVL tree [AVL62] or a red-black tree [GS78]. The com-

plexity of all operations is then O(log n), which is independent of U .

Lower bound of the search complexity in terms of n only is Ω(
√

log n/ log log n),

as proved in [BF01]. In [AT07] an implementation is given, which performs insert,

search and delete in this time.

For the purpose of using dynamic integer sets in persistent structures, we are

interested in implementations performing the required operations in O(log log U)

time. Such structures are exponentially faster than binary search trees in case

when U = O(nk). We describe two such structures in this chapter.

53

54 CHAPTER 4. DYNAMIC INTEGER SETS

4.1 Van Emde Boas Trees

The Van Emde Boas trees were introduced in [BKZ76] and [vEB77] and have

been simplified since. We give a full description of the structure here, because we

improve its space complexity in Theorem 4.4.

Definition 4.1. A Van Emde Boas tree (vEB tree or vEBT) is a data structure

capable of representing a set of integers in range 0 .. U − 1. Let M = ⌊
√

U⌋. The

vEB tree for range 0 .. U − 1 consists of a root node containing

• a minimum and a maximum element,

• an array of vEB trees c0, c1, . . . , cM for range 0 .. M ,

• a summary vEB tree s for range 0 .. M .

The child tree ci represents elements in the range iM .. iM +M−1 of the original

tree, except the minimum and maximum elements of the original tree, which are

not represented by any child tree ci. The summary tree s contains indices of

non-empty trees ci.

Theorem 4.2. Let U be positive integer. A vEB tree representing range 0 .. U−1

provides operations insert, search and delete in O(log log U) time and uses O(U)

space.

Proof. Because the range represented by a vEBT node decreases by a square root

each level, the whole vEB tree has depth O(log log U).

Inserting an element to an empty tree or to a tree with one element can be

done in constant time by setting the minimum and/or the maximum element

appropriately. Otherwise, we first check whether the new element is a new mini-

mum or maximum element and if so, we swap the new element with the previous

minimum or maximum element. Then we locate the child tree ci which should

contain the new element, and continue recursively. If the child tree was empty,

we also insert i into the summary tree s. Important observation is that when this

happens, inserting the element in the empty tree ci is done in constant time, so

there is only one recursive call and the complexity of insert is as requested. Ma-

nipulation with the summary tree is the reason why the minimum and maximum

elements are not stored in the child trees.

Deleting an element is similar. If the tree contains at most two elements, we

perform the deletion by modifying the minimum and/or the maximum element.

Otherwise, if we should delete the minimum element of the node (maximum is

analogous), we find the first non-empty ci in constant time using the minimum

element of summary tree s, swap the minimum element of the whole node with

4.1. VAN EMDE BOAS TREES 55

the minimum of ci and proceed by deleting the minimum of ci. In the last case

the element being deleted is stored in the child tree ci. We delete it recursively

and if the ci is now empty, we delete i from the summary tree s. When this

happens, deleting from ci took constant time, so same as with insert, there is

only one recursive call.

When performing a predecessor (successor is analogous) search for x, we start

by checking the trivial cases – if x is smaller than the minimum, predecessor does

not exist, and if x is larger or equal to the maximum, we return the maximum

element. Otherwise we find the child tree ci, where x belongs. If it is non-empty

and x is not smaller than its minimum element, we recursively search for the

predecessor of x in ci. If not, the predecessor of x is not in ci and we use the

summary tree s to find the non-empty predecessor tree cj where the predecessor

of x would be. When such tree exists, we return its maximum element, and when

cj it does not exist, we return minimum of the whole vEB tree. As before, there

is at most one recursive call on each level, resulting in the claimed O(log log U)

complexity.

Let S(U) denote the space needed by a vEBT representing range 0 .. U − 1.

Using the definition of the vEBT, S(U) = O(
√

U) + (
√

U + 1)S(
√

U) ≤ c ·
√

U +

(
√

U + 1)S(
√

U). We show that S(U) ≤ c · (U − 2) by induction. The base case

holds any constant U > 2. Otherwise, we use the induction hypothesis to get

S(U) ≤ c ·
√

U +c ·(
√

U +1)(
√

U−2) = c ·(
√

U +U−2
√

U +
√

U−2) = c ·(U−2).

Improving The Space Complexity of vEBT

The performance of vEBT is very good when measured using U only. But usually

we need to express the complexity using the number of elements n. Assuming

U = O(nk), the time complexity of vEBT operations is still O(log log n), but the

memory complexity is O(nk), which is unsatisfactory. If amortized complexity

is sufficient, we can do better, as mentioned for example in the Section 3.3 of

[Die89].

Theorem 4.3. Let U be positive integer. The space complexity of a vEBT can be

improved to O(n) at the cost of making the complexity O(log log U) of insert and

delete amortized. The unchanged worst-case complexity of search is O(log log U).

Proof. The reason for excessive space usage of a vEBT is that in every node there

is an array of
√

U child trees. If we stored the child trees using space linear in

56 CHAPTER 4. DYNAMIC INTEGER SETS

the number of non-empty child trees, the whole vEBT would fit in O(n) space.

But we need to be able to work with the child trees in constant time, otherwise

the time complexity of vEBT operations increases.

We can use dynamic perfect hashing [DKM+94] to represent the non-empty

child trees. That allows us to store the non-empty child trees in linear space, find

a child tree for a given index in worst-case constant time, and insert and delete

a child tree in amortized constant time.

It is an open problem whether a vEBT can be modified to fit in O(n) space

while retaining worst-case O(log log U) complexity of its operations. When fit-

ting in linear space, the current best complexity of insert, search and delete is

O((log log U)2/ log log log U), as we describe in the next section.

Nevertheless, it is possible to retain the O(log log U) worst-case complexity

and improve the space complexity.

Theorem 4.4. Let U be positive integer and let k = f(U) for any function

f(U) ≤ log U . Assuming we can allocate a block of uninitialized memory of

arbitrary size in constant time, we can improve the space complexity of a vEBT

to O(n · U1/k), while increasing the worst-case complexity of insert, search and

delete to O(k + log log U).

Proof. Instead of storing one large vEBT, we keep many small vEBTs vi. Namely,

every non-empty range i·U1/k .. i·U1/k+U1/k−1 of the set is stored in the vEBT vi.

Because there are at most n such trees, all non-empty vi fit in O(n ·U1/k) space.

What remains to be shown is how to store these small vEBTs in order to

be able to perform required operations. Conceptually, we store the vi in a trie

(see [Fre60] for description) with branching factor of U1/k, such that all the vEBTs

vi are stored at the level k.

In order to save space, we represent only non-empty vi and use a compressed

trie, sometimes also called a Patricia trie [Mor68]. In an ordinary trie, every

edge has an one element label. In a compressed trie, the nodes with exactly one

child are left out and the edge labels are sequences of elements, see Figure 4.1 for

illustration. Because the indices of vi fit in a machine word, so do the labels of

the edges in the Patricia trie, even if the edge is a catenation of k − 1 edges of

the regular trie.

Because there are at most n leaves, the Patricia trie has at most n−1 internal

nodes, each containing:

• an array of length U1/k containing empty and non-empty children,

• a summary vEB tree s containing indices of non-empty children.

4.1. VAN EMDE BOAS TREES 57

0 1 2 30 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

0 1 2 3

0 1 2 3, 1

v4 v6 v7

v13

Figure 4.1: Representing v0, . . . , v15 in a regular and Patricia trie, assuming only

v4, v6, v7 and v13 are non-empty.

A node occupies O(U1/k) memory, so the whole Patricia trie fits in O(n · U1/k)

space. When creating a node, we need to allocate an array of length U1/k in con-

stant time. The array can be uninitialized, because only the elements present in

the summary vEB tree are ever accessed, therefore, it is a reasonable assumption.

What remains to be shown is how to perform the required operations. When

inserting element x, we start by searching for v⌊x/U1/k⌋ in the trie, inserting x if

it is found. Otherwise we create v⌊x/U1/k⌋ containing x, insert it to the trie and

update the summary vEBT in the changed trie node.

Deleting an element x is equally simple. We start by locating v⌊x/U1/k⌋ and

deleting x from it. If the vEBT is now empty, we remove it from the trie and

update the summary vEBT in the changed trie node.

When searching for x, we try locating the vEBT vj for j = ⌊x/U1/k⌋. If

it exists and x is at least its minimum, we perform the search in this vEBT.

Otherwise we locate the non-empty vEBT vi with the largest i < j as follows:

We start in the deepest visited trie node. Using the minimum element of the

summary vEBT, we can check in constant time whether a non-empty vEBT vi

for i < j exists. If it does not, we continue the search recursively in the parent of

the trie node. If such vi exists, we use the summary vEBT to find the non-empty

vi with largest i and we return its maximum.

When performing any described operation, we spend constant time in all but

at most one visited trie nodes. In at most one node we perform either insert,

delete or search in its summary vEBT tree. We also perform either insert, delete

or search in at most one vEBT vi. Therefore, the total complexity of all described

operations is O(k + log log U).

Corollary 4.5. Let U be positive integer. We can improve the space complexity of

a vEBT to O(n·U1/(c·log log U)) for any constant c while preserving the O(log log U)

worst-case complexity of insert, search and delete, if we can allocate a block of

uninitialized memory of arbitrary size in constant time.

58 CHAPTER 4. DYNAMIC INTEGER SETS

4.2 Exponential Trees

Exponential trees are a technique by Andersson and Thorup [AT07] for convert-

ing static polynomial space integer set structures to dynamic linear space data

structures. The resulting dynamic integer set structures are currently the best

structures that fit in O(n) space.

We provide a short description because of the connection of this technique to

the vEB trees.

Theorem 4.6 (Theorem 1.1 from [AT07]). Let k ≥ 2. Suppose a static search

structure on d integer keys can be constructed in O(dk−1) time and space so that

it supports searches in S(d) time. We can then construct a dynamic linear space

search structure that with n integer keys supports insert, delete and searches in

time T (n), where

T (n) ≤ T (n(k−1)/k) +O(S(n)).

Outline of the proof. The structure of exponential trees is similar to the vEB

trees. The exponential tree with n elements can be defined recursively:

• the root has degree Θ(n1/k),

• the subtrees are exponential trees over Θ(n(k−1)/k) keys,

• an S-structure containing splitter for each subtree is stored in the root. If

a child t has splitter s and its successor has splitter s′, all keys in t are

greater or equal to s and less then s′.

The difference between exponential trees and vEB trees is how the keys are

split between the subtrees. While in vEB trees we uniformly split the key range

beforehand, exponential trees assign the key ranges to the subtrees dynamically

and store the splitters in a static structure in each exponential tree node. That

results in a linear space usage, while increasing the time complexity, because

we have to consult Θ(log log n) local S-structures during any operation with the

exponential tree.

If during insert, search and delete we spend only constant time and constant

number of operations with local S structure in every visited node, the time com-

plexity is

T (n) = O(S(O(n1/k))) + T (O(n(k−1)/k))

= O(S(O(n1/k))) +O(S(O(n(k−1)/k2

))) + T (O(n(k−1)2/k2

))

= O(S(n)) + T (n(k−1)/k)

4.2. EXPONENTIAL TREES 59

In order to get rid of the asymptotic, we applied the recurrence to itself and used

the fact that for n = ω(1) we have n ≥ O(n1/k) ≥ O(n(k−1)/k2
) and n(k−1)/k ≥

O(n(k−1)2/k2
).

As the local S structure in a node with n keys can be built in O(n(k−1)/k)

time, it occupies at most that much space. Therefore, the space complexity of an

exponential tree with n elements is

C(n) = O(n(k−1)/k) +
∑

ni

C(ni) where ni = O(n(k−1)/k) and
∑

ni = n

and it can be shown by induction that C(n) ≤ c(n− n(k−1)/k) = O(n).

Of course, the fundamental question is how to maintain the static S-structures

while inserting and deleting elements. Conceptually, it is a standard task – we

use partial rebuilding technique [Ove83b]. Similarly to B-trees [BM72], we can

maintain the shape of an exponential tree just by splitting a node into two ad-

jacent nodes, and by joining two adjacent nodes into a new one. When we split

or join nodes, we start building S-structures for the new nodes. We build them

gradually, performing constantly many steps each time we insert or delete a key

in any subtree of the new node. Meanwhile we keep the old S-structures and

use them for navigating. It is possible to schedule the splits and joins such that

a node containing m keys is split or joined after at least Ω(m(k−1)/k) keys are

modified, allowing us to fully build the new local S structure, because the time

needed for the creation of the local S structure is O((m1/k)k−1). Therefore, we

perform the rebuild fast enough to always keep only constant number of local S

structures in any node.

Although the technique is a standard one, the details are highly technical and

delicate. An interested reader can find an elaborate proof in [AT07].

Static Structures for Exponential Trees

There are several suitable static search structures that can be used with expo-

nential trees. As an example, we can use a static variant of a vEB tree. It is

similar to the vEBT modification from the Theorem 4.3 – we store the children

of every vEBT node using static perfect hashing. Static perfect hashing can be

thought of as a “perfect sparse array” – it is able to store m integer keys bounded

by B in polynomial space with respect to m, and find a given key in constant

time. It can be constructed deterministically by several methods, probably the

best of them developed by [Ram96], which constructs the static perfect hashing

in O(m2 ·B) time. That allows us to create a static vEB tree in polynomial time

– at first we store children of a vEBT node in a balanced binary tree, converting

60 CHAPTER 4. DYNAMIC INTEGER SETS

them to static perfect hashing after all keys have been inserted to the vEBT, all

in O(n log n log log U + n log log n · U) time.

Using this static variant of vEB tree, we can create linear-space exponential

tree with O(log log n · log log U) complexity of operations.

In the following theorem we summarize best known static search structures,

together with the consequential exponential trees.

Theorem 4.7 (Corollary 1.4 from [AT07]). In polynomial time and space, we can

construct static search structure over n keys bounded by U supporting searches in

(A) O
(

√

log n/ log log n
)

(B) O (log log U/ log log log U)

(C) O (1 + log n/ log W)

time on a RAM, where W is the word length.

Using these structures, we can create fully dynamic linear space search struc-

tures supporting insert, delete and searches in time

(A) O
(

√

log n/ log log n
)

(B) O (log log n · log log U/ log log log U)

(C) O (log log n + log n/ log W) .

Proof. The static structure (A) is described in [BF01]. The static structure (B)

is an improved static vEBT just described, also described in [BF01].

The static search structure (C) is based on fusion trees and described in the

Lemma 4.2 of [AT07]. It is based on the central part of the fusion tree [FW93],

which is a static search structure with the following properties: For any d =

O(W 1/6), a static data structure containing d keys can be constructed in O(d4)

time and space, such that it supports search queries in O(1) worst-case time. This

structure itself cannot be used in exponential trees because of the limit on the

number of elements, but we can create a static B-tree where each node has degree

Θ(W 1/6) and the children are stored using the described static search structure.

Such a B-tree has height of Θ(logW 1/6 n) = Θ(log n/ log W + 1).

The resulting exponential trees are just straightforward applications of The-

orem 4.6 to the described static search structures.

4.3 Chapter Notes

This chapter is mainly a summary of known results. Our contribution is the The-

orem 4.4, where we improve the space complexity of a vEBT tree while preserving

4.2. EXPONENTIAL TREES 61

the time complexity of its operations. This theorem is then used during construc-

tion of persistent array in Corollary 5.7.

For curious reader, we summarize the relevant lower and upper bounds:

• Corollary 3.10 from [BF01]: Suppose a set of n integers each bounded by U

is represented using nO(1) memory cells of logO(1) U bits. Then predecessor

search takes Ω(
√

log n/ log log n) in the worst case.

The authors also describe a data structure matching this lower bound using

quadratic memory. Using exponential trees, a dynamic structure fitting in

linear space can be created.

• Corollary 3.9 from [BF01]: Suppose a set of n integers each bounded by U

is represented using nO(1) memory cells of 2log1−Ω(1) U bits. Then predecessor

search takes Ω(log log U/ log log log U) in the worst case.

Once again, the authors also describe a data structure matching this lower

bound using quadratic memory. Nevertheless, the resulting exponential tree

does not match this complexity – when U = O(nk), it has complexity of

O((log log U)2/ log log log U).

• The previous lower bound was improved in [PT06], assuming the data struc-

ture fits in n · logO(1) n bits and U = O(nk). The predecessor search then

takes Ω(log log U) in the worst case.

It is an open problem whether such a structure exists. The current best

result has the already mentioned O((log log U)2/ log log log U) complexity.

62 CHAPTER 4. DYNAMIC INTEGER SETS

Chapter 5

Persistent Arrays

Arrays are without any question the most frequently used data structure, present

in nearly any algorithm. An array is an object containing n elements, numbered

from 1 to n, allowing to both lookup or update an element using its index in

constant time.

Definition 5.1. A persistent array a is a structure supporting two operations:

• lookup(i, av) returns the value of av[i], the i-th element of array av,

• update(i, x, av) returns new array aw obtained from av by changing the av[i]

to x, i.e., aw[i]← x.

We call av a version of the array and we write only v when the array is clear from

context. In this chapter, n is always the size of the array and m is the number of

updates performed on the array.

However, obtaining efficient persistent array implementation is quite com-

plicated – all described methods of creating efficient persistent data structures

work for linked data structures, i.e., for structures with bounded out-degree of

their nodes, and therefore these methods cannot be used to obtain an efficient

persistent array.

Having a persistent array with constant time operations would have impor-

tant consequences. The most commonly used model of a computer, the word

RAM [Sch80], considers the memory to be just a big array. Therefore, using a per-

sistent array with constant time operations, we could make any data structure

with worst-case bounds fully persistent without changing its time complexity.

This would include for example graphs and hash tables. In addition, all algo-

rithms with worst-case bounds could be modified to be fully persistent without

any increase in complexity, like path finding, game solvers, program simulations

detecting data races or deadlocks, and many others.

63

64 CHAPTER 5. PERSISTENT ARRAYS

Nevertheless, in Section 5.2 we show that even partially persistent array

lookup complexity has a lower bound of Ω(log log n). That implies that although

all worst-case data structures and algorithms can be made fully persistent using

persistent arrays, the time complexity is increased by a multiplicative factor of

Ω(log log n). Therefore, persistent arrays are not an efficient universal method for

creating persistent structures, because for many ephemeral structures the persis-

tent variants have the same time complexity, e.g., for linked data structures as

described in Chapter 2.

Still, a persistent array is a very important data structure, because arrays are

crucial to many basic algorithms, e.g., depth first search, shortest path algorithms,

radix sort or dynamic programming algorithms like longest common subsequence

(used to compute difference of two files) and shortest path in acyclic graph. It

can also be used to create persistent variants of data structures which cannot be

made persistent using the known methods, i.e., structures with unbounded in-

degree or out-degree. These structures include matrices, hash tables or graphs,

to mention a few.

In this chapter we present several fully persistent array implementations. The

first implementation of Section 5.3, similar to the one in extended abstract [Die89],

achieves amortized complexity of O(log log m) for update and same worst-case

complexity for lookup. In Section 5.4 we provide two algorithms with worst-

case bounds, the first with O((log log m)2/ log log log m) and the second with

O(log log m) complexity for both lookup and update. Nevertheless, the latter

algorithm has superlinear memory complexity.

We slightly improve the complexity of persistent array operations in Sec-

tion 5.5. We modify all our implementations to depend not on the number of

array modifications m, but instead on min(m, n). We also show an implementa-

tion with O(
√

log k/ log log k) complexity, if no array element is modified more

than k times the average.

The garbage collection of persistent arrays, i.e., freeing of unused array ver-

sion, is an issue disregarded by other implementations. Usually, some or even

majority of array versions become inaccessible over time and could be freed. The

problem is that although only one element is modified in a particular version of

the array, the other array elements are also accessible via a lookup on this ver-

sion. Therefore, even if an array version is not directly accessible, it cannot be

deleted, because it is referenced by an array version modifying a different element.

We describe efficient algorithms for recognizing the removable array versions in

Section 5.6.

5.1. RELATED WORK 65

5.1 Related Work

Because arrays are omnipresent data structures, there have been many attempts

to provide efficient persistent arrays. The persistent arrays have been demanded

for both the ability to access and modify any version of the array, and also as

a functional counterpart to array in functional languages. The ultimate goal was

a fully persistent array with constant time lookup and update, although this was

naturally never achieved, because of the lower bound presented in Section 5.2.

Probably the most common persistent array implementation is a full binary

tree or balanced binary tree with integer keys [Hug85, Mye84]. Such implementa-

tions have O(log n) worst-case time and space complexity for update andO(log n)

worst-case time complexity for lookup. These implementations have several ad-

vantages – they use only the path copying technique and therefore no explicit

version identifiers are necessary. In addition, they can be implemented in a pure-

ly functional language, i.e., without side-effects. This implementation is optimal

in the pointer machine model, which is sometimes used as a basis for functional

languages. We present such implementation in Chapter 6, dealing with the choice

of the best branching factor of the tree and also comparing it to other alternatives.

A different approach, a shallow binding technique, was devised by [Bak78a,

Bak91]. One version of the persistent array is called active and the persistent

array is represented by an ephemeral array corresponding to the active version

and by a version graph containing all modifications to the persistent array. If

the persistent array is used single-threadedly, all operations work in constant

time. Nevertheless, if a version different from active is accessed and this version

is in distance d from the active version in the version tree, it takes O(d) time

to apply/undo the changes to the ephemeral array so that it corresponds to the

required version. The same idea appears also in [AHN88] and [Hug85], called

version tree arrays or trailer arrays.

The shallow binding is improved in [Chu92] to keep the version graph of size at

most O(n), by splitting the version tree into two independent persistent arrays. If

such a split is performed every Θ(n) modifications to the array, the amortised cost

of the split is constant. Also the lookups which are grouped in voluminous read

sequences of size Ω(n) can be performed in amortised constant time. Nevertheless,

both lookup and update still have O(n) worst-case complexity, if a version far

from the active one is required.

Further improvements are presented in [Chu94]. Randomisation is used and

the version tree is split not periodically every Θ(n) updates, but with probability

of 1/n during every lookup. This improves the average lookup time, however, at

66 CHAPTER 5. PERSISTENT ARRAYS

the cost of space complexity. If an array with m modifications is read frequently,

eventually it is split into m independent arrays, requiring O(nm) memory. That

makes the method highly impractical.

The logarithmic complexity of update and lookup is optimal in pointer ma-

chine model. However, in a word RAM model, which is the theoretical model

closest to the real computers, we can do better. The asymptotically fastest exist-

ing persistent array implementation with amortised O(log log m) complexity of

update and lookup is outlined in an extended abstract [Die89]. Independently for

each element, a structure containing all its modification is kept. A fast structure

described in Theorem 4.3 allowing operations in O(log log m) in the RAM model

is used. The array versions are compared using the list order problem solution

from Theorem 3.6. In Section 5.3 we describe similar, but simpler persistent array

implementation with the same complexity.

The idea of storing modifications separately for each element appeared already

in [Coh84]. Here a partially persistent array implementation was suggested which

stored a linked list of modifications for each element. Such implementation can

perform updates in constant time, but lookup operation complexity is linear in

the number of modifications to the element in question.

One of the most practical persistent array implementations was suggested

in [OB97]. Again, the array versions are labelled using the list order prob-

lem, Theorem 3.6. For each element, all its modifications are stored in a splay

tree [ST85], indexed by the version label. The size of the version tree is maintained

to be O(n) by splitting the version tree when it grows too large. Such implemen-

tation has O(log n) amortized complexity of lookup and update. However, both

operations have constant complexity if the array is used single-threadedly or if

the elements are accessed in such a way that no element is accessed more than k

times the average.

Persistent Arrays Provided in Functional Languages

Considering that there is no persistent array providing constant time operations,

designers of functional languages have to decide how to handle persistent arrays

in the language.

The simplest solution is to provide no arrays, neither ephemeral nor persistent.

This was common in early functional languages like Miranda [Tur86], Standard

ML or the first Lisp dialects.

Another approach, taken by Haskell [PJ+03], is to provide monolithic arrays.

A monolithic array is a standard array stored as a continuous memory block,

5.2. LOWER BOUND ON PERSISTENT ARRAY LOOKUP 67

allowing constant time lookup. Nevertheless, every update creates a fresh copy

of the array. Such monolithic arrays are purely functional data structures and

are very suitable if lookups and updates do not interleave much, for example

when creating histograms or in dynamic programming. But many algorithms like

a depth first search cannot be implemented efficiently using monolithic arrays.

Many functional languages with eager evaluation provide ephemeral arrays

with destructive updates, as Caml [WF94], its .NET successor F# or newer Lisp

dialects like Common Lisp and Scheme. Nevertheless, such structures require

side effects and interfere with the type system, causing for example the value

restriction in Caml [WF94] and its successors.

Another approach was taken by Haskell [PJ+03] and Concurrent Clean [HP92].

In these languages, arrays with destructive updates are also provided, but in

such a way, that the compiler ensures every array is used single-threadedly. In

other words, there are no side effects to worry about and the type system is not

affected. In Concurrent Clean, this is achieved by unique types, a concept very

similar to linear types of [Wad90b]. The unique types guarantee that there is at

most one reference to any structure. Haskell chose a different approach utilizing

monads [Wad90a, Wad92], namely the ST monad [LPJ94] in the case of arrays.

Computations in a monad are ordered and all array references correspond always

to the latest version of the array. Both approaches allow destructive updates of

the array to take place, because the original version cannot be accessed any more.

5.2 Lower Bound on Persistent Array Lookup

Consider a partially persistent array with n elements and m = nγ modifications,

where γ is a constant fulfilling 1 < γ ≤ 2.

Assuming the space complexity of the array is O(m logk m) for a constant k,

we show that the lower bound on the lookup complexity in this partially persistent

array is Ω(log log n). This lower bound holds in the cell probe model introduced

by [Yao81] and the complexity of update is not limited in any way.

The proof of the lower bound is based on a reduction of the predecessor search

problem to partially persistent array lookup. The existence of this reduction was

first mentioned by Demaine, Langerman and Price [DLP08], stating that “accord-

ing to personal communication with Mihai Pătraşcu, 2008, persistent arrays have

a lower bound of Ω(log log n), based on a predecessor lower bound of [PT07].”

As far as we know, the reduction itself has never been published, that is why we

present it in Theorem 5.3.

68 CHAPTER 5. PERSISTENT ARRAYS

Predecessor Search Problem

In the Predecessor search problem we are given a set Y of n integers of ℓ bits

each, and the goal is to answer predecessor queries, i.e., to evaluate, for a given

integer x, predecessor(x) = max{y ∈ Y | y ≤ x}.

Theorem 5.2 (from [PT06] and [PT07]). If we use S w-bit words to represent Y

and define a = log S
n

+ log w, then the lower bound in the cell probe model on

a predecessor query is, up to constant factors,

min

logw n

log ℓ−log n
a

log(ℓ/a)
log(a/ log n·log(ℓ/a))

log(ℓ/a)
log(log(ℓ/a)/ log(log n/a))

.

This lower bound applies to both deterministic algorithms (proven in [PT06]) and

to probabilistic algorithms (proven in [PT07]). For each case, there is also an

algorithm performing predecessor queries with that complexity.

In the important case when w = ℓ = γ log n for a constant γ > 1 and near

linear space, i.e., S = n · logO(1) n, the optimal search time is Θ(log ℓ).

Reduction to Persistent Array Lookup

The predecessor search problem is tightly connected to persistent array lookup,

because lookup(i, av) returns a value au[i] stored by an update operation, where u

is the closest predecessor of version v modifying index i. However, this observation

by itself results only in a lower bound of Ω(1), because in the corresponding

reduction, ℓ is 1 · log n and the predecessor search problem lower bound is trivial.

However, we can use the fact that the array lookups with the same array version

behave differently on different indices, which can be used to make the reduction

nontrivial.

Theorem 5.3. The predecessor search problem can be solved using a lookup in

a partially persistent array.

Specifically, let Y be a set of n integers of ℓ bits each and let the number of

bits in a word w = ℓ = γ log n for 1 < γ ≤ 2. Using a partially persistent array

with nγ/2 elements and n modifications, we can answer a predecessor search in Y

using a lookup in the partially persistent array and O(1) additional work.

If the partially persistent array occupies O(n logk n) space after performing

n modifications, the Theorem 5.2 implies that the lower bound on the lookup

operation is O(log log n) in the cell probe model.

5.3. AMORTIZED PERSISTENT ARRAY 69

Proof. Let N = nγ/2. We create a partially persistent array a of N elements and

an ephemeral array t of N elements in the following way. Initially, every element

of a is set to −1. Then for each i ∈ {0, . . . , N − 1} we perform the following:

• For each y ∈ Y such that y mod N = i we modify the current version of a

by storing a value y at the index ⌊y/N⌋.

• Afterwards, we store the current version of a in t[i].

Finally, let p be another auxiliary ephemeral array of N elements and set p[i]←
predecessor(i ·N) for 0 ≤ i < N .

The auxiliary arrays occupy O(N) space. Because there are n modifications

performed by the persistent array, the total space complexity is O(n logk n).

An example of this construction is in Figure 5.1.

0

1

2

3

4ar
ra
y
a
el
em

en
ts

0 1 2 3 4 5 6 7

array a versions

-1

-1

-1

-1

-1

15

7

23

4

8

24

9

t[0]← 1 t[1]← 3

t[2]← 3

t[3]← 5 t[4]← 7

0

1

2

3

4ar
ra
y
p
el
em

en
ts -1

4

9

9

15

Figure 5.1: Example of a reduction of predecessor search to partially persistent

array lookup with set Y = {4, 7, 8, 9, 15, 23, 24} and N = 5.

To answer a predecessor(x) query, we perform a lookup in a at index ⌊x/N⌋
and version t[x mod N]. If the result is not −1, then the predecessor is the result

of this lookup. If the result is −1, then the predecessor is stored in p[⌊x/N⌋].
Therefore, we can compute the predecessor using one lookup and O(1) extra

work.

Consequently, the lower bound for predecessor search problem can be applied,

showing that under the specified conditions, the time complexity of partially

persistent array lookup operation is at least Ω(log ℓ), which is Ω(log log n).

5.3 Amortized Persistent Array

We now develop a fully persistent array implementation with amortised time com-

plexity O(log log m). Our implementation is similar to the one in the extended

70 CHAPTER 5. PERSISTENT ARRAYS

abstract [Die89]. The key difference of our implementation is the carefully chosen

connection of the list order problem and the van Emde Boas trees via Invariant 1,

together with the representation details provided in the algorithms solving the list

order problems (Theorems 3.6 and 3.9). This way, the implementation is simpler,

better suited for the worst-case variant in the next section and we are able to use

ordinary list labelling, instead of the weighted list labelling used in [Die89].

5.3.1 Partially Persistent Array

We first consider a simpler case of partially persistent arrays. For each element, we

store the changes to this element separately in a structure indexed by integers.

We use the vEB tree defined in Definition 4.1, which allows manupulating a

set of integers of size bounded by U and as shown in Theorem 4.2, it supports

insertions, deletions and finding predecessors and successors in time O(log log U).

We use the space efficient variant of vEBT from Theorem 4.3, which has linear

space complexity, at the cost of the complexity of insert and delete becoming

amortized.

We implement partially persistent array as an array of vEB trees. We label

the array versions by consecutive integers starting from 1. The update operation

to the latest version v is implemented as an insertion into the appropriate vEBT

with key v + 1. The lookup operation at version v is implemented by predecessor

search in the appropriate vEBT with key v.

This partially persistent array implementation has O(log log m) worst-case

lookup complexity and O(log log m) amortized update complexity and requires

O(m + n) space.

5.3.2 Fully Persistent Array

Theorem 5.4. We can implement a fully persistent array with n elements such

that during m modifications of the array, the worst-case lookup complexity is

O(log log m) and the amortized complexity of update is O(log log m).

The initial version of the array can be created in O(n) time and after m

modifications the array occupies O(n + m) space.

Proof. In contrast to the partially persistent case, where the versions are iden-

tified by consecutive integers starting from 1, the representation of the versions

and navigation in the version tree is more complicated in fully persistent struc-

tures.

5.3. AMORTIZED PERSISTENT ARRAY 71

We use the solution described in Chapter 3. For navigation in the version

tree we use its linearized variant, the version list. Specifically, we use the extend-

ed version list described in Definition 3.2. In this list, every array version v is

represented using two versions v+ and v−. When modifying an element i in the

version v, we create new versions w+ and w− in the extended version list and

we set the required value of the element i in the version w+. With the version

w− we associate the value the element i had in the version v. This is needed,

because in the extended version list, the successors of w− are not successors of w

in the version tree, and therefore the version w− is used to “undo” the effect of

w+ outside the subtree of the version w.

We use the list order problem to compare the versions in the extended version

list. Using Theorem 3.6 we can compare the versions in the extended version list

in constant time. We also know that the versions are assigned labels of length

O(log m).

A straightforward solution would be to again use the vEB trees indexed by the

labels assigned to the versions in the extended version list. Nevertheless, during

an insertion to the extended version list, amortized Θ(log m) labels change and

this is optimal, as discussed in Section 3.2.2.

Nevertheless, even if Θ(log m) labels change, we can exploit the way how the

changes are performed. As described in Theorem 3.6, the versions are assigned

labels consisting of two parts, the prefix label and the sublist label, both O(log m)

bits long. One prefix labels is shared by O(log m) versions and we call a sequence

of versions sharing the same prefix label a sublist. We also know that during each

insert to the extended version list, amortized O(1) prefix labels and sublist labels

change.

For every array element, we store all its modification in the following way.

If there are less than log m modifications to this array element, we store the

modifications in a balanced binary search tree. If there are more than log m

modifications, we group continuous sequences of modifications into buckets of

size Θ(log m). We call the first version in the bucket a bucket leader. The buck-

ets are stored in the vEB tree indexed by the label of the bucket leader and the

buckets themselves are represented using a balanced binary search tree.

It is crucial to create a connection between the buckets and sublists:

Invariant 1. Every sublist contains at most one bucket leader.

This invariant guarantees that each prefix label is used at most once as an

index in any vEBT. Therefore, during the insertion to the extended version list,

only amortized O(1) vEBT keys are changed.

72 CHAPTER 5. PERSISTENT ARRAYS

We now describe the resulting implementation of a fully persistent array in

detail. The representation is illustrated in Figure 5.2.

Extended version list

1 2

vEBT

Array elements modifications

su
b
li
st

b
u
ck

et

b
u
ck

et

su
b
li
st

su
b
li
st

su
b
li
st

su
b
li
st

b
in

a
ry

tr
ee

vEBT

b
u
ck

et

b
u
ck

et

3

vEBT

b
u
ck

et

b
u
ck

et

N. . .

Figure 5.2: Fully persistent array implementation

We maintain an extended version list of versions. Also, for each array index,

we store versions which modified this index in the following structure. If there

are at most 1 + log m modifications, we store them in a balanced binary search

tree. Otherwise we group the versions into buckets of size at most 2 log m and

store the buckets in the vEB tree indexed by the label of the bucket leader. There

are O(m/ log m) buckets and each bucket is represented using a balanced binary

search tree.

The vEB trees work only for keys bounded by a fixed U . When creating a vEB

tree, we choose smallest U in a form U = 22i
such that all current labels are less

than U . We then keep this bound until a label larger than U is assigned. At that

moment, we add a level to the vEB tree by creating a new root node containing

the current vEB tree as a child with index 0. This can be done in constant time

and squares the range the vEB tree can handle. That way, log U is at most twice

the length of used labels, therefore, log U is O(log m).

The create(n, a) operation creates a persistent array from specified array a.

It constructs an extended version list containing one initial version v and for

each array element i, a binary search tree is created, containing value a[i] asso-

ciated with version v. This can be accomplished in O(n) time and space and

the Invariant 1 holds as there are no buckets yet.

To perform a lookup(i, v), we search the modifications of array element i for

a predecessor of label of version v (inclusive). If the modifications are stored in

a tree, the size of the tree is at most log m and we can find the predecessor of

v in O(log log m) time. Otherwise, we at first find the predecessor in a vEBT,

5.3. AMORTIZED PERSISTENT ARRAY 73

locating the bucket containing the predecessor, and find the predecessor in the

bucket. Because the range of vEBT is mO(1) and the size of bucket is O(log m),

the lookup has O(log log m) complexity.

To carry out an update(i, x, v), we first perform x′ ← lookup(i, v) and if x = x′,

there it nothing to do. Otherwise we insert versions w+ and w− in the extended

version list just behind v. These inserts take amortized O(1) and during them

there is amortized O(1) of prefix label changes and sublist label changes. If this

causes a bucket leader label to change, we modify the label in the corresponding

vEBT too. According to Invariant 1, there is at most one such bucket leader for

a prefix label change, therefore, it is enough to perform amortized O(1) changes

in the vEB trees in time O(log log m).

We now insert two modifications of array element i – value x in version w+

and value x′ in version w−. If the modifications are stored in a balanced search

tree, we insert the two new versions into the tree in O(log log m) time. If the

resulting tree contains more than 1 + log m versions, we create a bucket out of

the whole tree and create a new vEBT containing this bucket indexed by the

label of the bucket leader.

If the modifications of array element i are already stored in buckets in vEBT

tree, we find the bucket where the versions w+ and w− belong using a predecessor

search in the vEBT and then insert these versions in the bucket. If the size of the

bucket grows larger than 2 log m, we split the bucket in two equal parts, create a

new bucket out of the second part and insert the new bucket to the vEBT with

the bucket leader label. All this can be done in O(log log m) time.

In any case, if a new bucket is added to vEBT, we check whether the Invari-

ant 1 still holds. If not, there is now a sublist containing two bucket leaders. We

restore the invariant by splitting the sublist into two parts, each containing one

bucket leader, creating a new sublist from the second part. This sublist split is

performed exactly as the sublist split in Theorem 3.6. Therefore, the split takes

O(log m) time and causes amortized O(log m) prefix label changes and O(log m)

suffix label changes. According to Invariant 1, these label changes cause at most

amortized O(log m) changes of bucket leader labels, therefore, we can update the

vEB trees in O(log m log log m) time. Because every bucket splits after log m

insertions, there are at most O(m/ log m) buckets, thus we have to perform the

invariant preserving subtree split at most O(m/ log m) times, spending a total

time of O((m/ log m) log m log log m) on these splits. Therefore, their amortized

cost is O(log log m) per update.

We conclude that the amortized cost of an update is O(log log m).

74 CHAPTER 5. PERSISTENT ARRAYS

5.4 Worst-Case Persistent Array

We now improve the described persistent array implementation to guarantee

worst-case bounds instead of only amortized bounds. Note that in the origi-

nal paper [Str09] we incorrectly used the vEB trees with amortized complexity

in the worst-case construction, which we amend here.

Theorem 5.5. We can implement a fully persistent array with n elements such

that during m modifications of the array, the worst-case complexity of lookup and

update is O(log log m + S(m)), where S(m) is the complexity of operations of

a dynamic integer set containing m integers bounded by mO(1).

The initial version of the array can be created in O(n) time and after m

modifications the array occupies O(n + m) space.

Proof. The amortized implementation described in Theorem 5.4 uses amortiza-

tion in several places:

• The vEB tree requires amortization to be space efficient.

• The list order problem algorithm of Theorem 3.6 has amortized complexity.

• The maintenance of buckets and Invariant 1 has amortized complexity.

We therefore replace the vEB trees with an equivalent structure with worst-

case bounds. We can use Theorem 4.4 or Theorem 4.7, although none of these

structures has the same bounds as the vEB trees and it is an open problem

whether such structure exists. That is why we parametrize the complexity of

the resulting persistent array by S(m), the complexity of dynamic integer set

operations.

Instead of the amortized solution to the list order problem we use the already

described worst-case solution from Theorem 3.9. This algorithm maintains the

sublists by splitting the largest sublist periodically every Θ(log m) insertions and

uses Corollary 3.8 to prove that the sizes of the sublists are bounded by O(log2 m).

We can use the same algorithm to maintain the buckets – if we split a bucket

every log m updates, there will beO(m/ log m) buckets and the size of the buckets

will be bounded by O(log2 m), according to Corollary 3.8.

We now describe the resulting implementation of a worst-case fully persis-

tent array in detail. The representation is very similar to the representation of

amortized fully persistent array illustrated in Figure 5.2.

We maintain an extended version list of versions using the algorithm from

Theorem 3.9, which is split to Θ(m/ log m) sublists of size O(log2 m). Also, for

each array index we store versions which modified this index in the following

5.4. WORST-CASE PERSISTENT ARRAY 75

structure. Initially we store the modifications in a balanced binary search tree.

At some point we may change the representation – we group the versions into

buckets of size at most O(log2 m) and store the buckets in a dynamic integer set

indexed by the label of the bucket leader, i.e., by the label of the first version in

the bucket. We maintain Θ(m/ log m) buckets and represent each bucket using

a balanced binary search tree.

We preserve an invariant which is a slight relaxation of the Invariant 1:

Invariant 2. Every sublist contains at most one bucket leader, except for one

sublist, which may contain two bucket leaders.

The create and lookup operations are performed exactly as in the amortized

implementation from Theorem 5.4.

To carry out an update(i, x, v), we first perform x′ ← lookup(i, v) and if x = x′,

there it nothing to do. Otherwise we insert versions w+ and w− in the extended

version list just behind v. These inserts take O(1) worst-case time and cause

O(1) prefix label changes and sublist label changes. If this causes a bucket leader

label to change, we modify the label in the corresponding dynamic integer set too.

According to Invariant 2, there are at most two such bucket leaders for a prefix

label change, therefore, it is enough to perform O(1) changes in the dynamic

integer sets in time O(S(m)).

We then insert two modifications of array element i – value x in version w+ and

value x′ in version w−. If the modifications are stored in a balanced search tree,

we insert the two new versions into the tree in O(log log m) time. Otherwise,

if the modifications are already bucketed, we find the corresponding bucket in

O(S(m)) time and insert the modifications to the bucket in O(log log m) time.

The sublists, buckets and Invariant 2 are maintained in phases, each of length

2 log m. At the beginning of each phase, we split the largest sublist as described in

Theorem 3.9, finishing in log m array updates. Then we find the largest balanced

tree or bucket with array element modifications, split it in O(log log m) time and

insert the new bucket in the dynamic integer set in O(S(m)) time using the label

of the bucket leader as a key. If the sublist containing the new bucket leader

already contains a bucket leader, we split it into two, each containing one bucket

leader. We perform this split exactly when splitting the largest sublist, finishing

in log m array updates and thus ending the whole phase. Therefore, there are

always Θ(m/ log m) sublists and buckets and the Invariant 2 holds all the time.

All described operations take at most O(log log m + S(m)) time during every

array update.

76 CHAPTER 5. PERSISTENT ARRAYS

Consequently, the worst-case complexity of an update is O(log log m+S(m)).

Corollary 5.6. Utilizing the variant (B) of exponential tree from Theorem 4.7

as a dynamic integer set, we obtain a fully persistent array implementation with

worst-case O((log log m)2/ log log log m) complexity for both lookup and update.

An array of n elements needs O(n + m) space after m modifications.

Corollary 5.7. Utilizing the modified vEBT from Corollary 4.5 as a dynamic

integer set, we obtain a fully persistent array implementation with worst-case

O(log log m) complexity for both lookup and update.

However, the space complexity is superlinear. To represent an array of n

elements after m modifications, O(n + m1+1/(c·log log m)) space is needed, for any

fixed constant c.

We conclude this section with the apparent open problem:

Open Problem. It is an open problem whether there exists a fully persistent ar-

ray implementation with worst-case O(log log m) complexity of both lookup and

update, that would use O(n + m) space to represent an array of n elements after

m modifications. The lower bound is Ω(log log n) according to Theorem 5.3, the

upper bound is currently O((log log m)2/ log log log m) according to Corollary 5.6.

This open problem is tightly connected to the existence of dynamic integer

set with O(log log U) worst-case bound, which is an open problem discussed in

Chapter Notes of Chapter 4 and in [AT07].

5.5 Improving Complexity of Persistent Array

Operations

We can improve the complexity of array operations in case the number of modi-

fications m is much larger than the number of array elements n. In that case, we

can split the version tree of the array into independent pieces, each containing at

most O(n) versions.

Theorem 5.8. We can improve the amortized fully persistent array implemen-

tation from Theorem 5.4, so that the complexity of both lookup and update is

O(log log min(m, n)).

Proof. If there are less than 2n modifications of the array, min(m, n) is O(m)

and the original implementation has the required complexity.

5.5. IMPROVING COMPLEXITY OF PERSISTENT ARRAY OPERATIONS 77

Whenever an array contains 2n versions, we split it. We start by finding the

version v just in the middle of the version list. We then create a new persistent

array containing the versions of the original array up to version v, by inserting

these modifications one by one. Finally, we create another new persistent array,

whose initial value is the value of the original array in version v. We then insert

the modifications introduced by the versions v and all the following into this

new array. Therefore, to perform a split, we create two new persistent arrays

and perform n updates on both of them. The resulting complexity of a split is

O(n log log n). Nevertheless, a split happens only after n updates of the array,

making the amortized complexity of split O(log log n) per array update.

Consequently, if a persistent array is modified more than 2n times, we rep-

resent it using several independent arrays, each containing at most 2n modi-

fication. The complexity of these array operations is therefore O(log log n) =

O(log log min(m, n)), including the amortized cost of the splitting.

We can augment the worst-case implementation in a similar way.

Theorem 5.9. We can improve the worst-case fully persistent array implemen-

tation from Theorem 5.5, so that the complexity of both lookup and update is

O(log log min(m, n) + S(min(m, n)).

Proof. If there are less than 2n modifications of the array, min(m, n) is O(m)

and the original implementation has the required complexity.

Whenever an array contains 2n versions, we start splitting it. During the

following n/2 updates to the array, we create two new persistent arrays, spending

O(1) time during every update. In the next n/2 updates, we start moving versions

from the original array to the two new arrays, three unmoved leftmost versions to

one of the arrays and three unmoved rightmost versions to the other one. When

a version is moved to a new array, the lookups and updates with this version are

performed in the new array only. After n/2 steps, all versions from the original

array have been transfered, because there are at most 3n versions to be moved and

we transfer 6 versions at a time. Also, the size of the new arrays is at most (2n +

n/2)/2 + n/2 = 7n/4, if the last n/2 updates take place in one of the new array.

The time complexity of the split is 6 additional updates during an array up-

date, the asymptotic complexity of update is therefore unchanged.

Consequently, if a persistent array is modified more than 2n times, we rep-

resent it using several independent arrays, each containing at most 2n modifi-

cation. The complexity of operations of these arrays is therefore O(log log n) =

O(log log min(m, n)).

78 CHAPTER 5. PERSISTENT ARRAYS

When we split the version tree of the persistent array into pieces of size O(n),

the persistent array operations have better complexity if the array elements are

modified uniformly. That is often the case – for example, during various graph

searches like a depth first search, every element of array marking already visited

nodes is modified exactly once. Also if a graph has limited degree d, many

algorithms modify values associated with every node at most d times, such as

the shortest path algorithm. Therefore, improving array operations complexity

in this way is quite useful.

Theorem 5.10. If every array element is modified at most k times or if no array

element is modified more than k times the average during every n array updates,

the complexity of persistent array operations is O(min(
√

log k/ log log k, log log n))

and O(min(
√

log k/ log log k, log log n + S(n))) for the amortized and worst-case

variant, respectively.

Notably, if k is a constant, the array operations work in constant time.

Proof. Consider the array implementations from Theorem 5.8 and Theorem 5.9

that split the version tree in order to limit its size to O(n). If every element is

modified at most k times the average, there are at most O(k) modifications to

every array element in any version tree of O(n) size.

Let k0 be a value when
√

log k0/ log log k0 is equal to the original complexity

of array operations. A rough estimate is k0 ≈ loglog log n n. We modify the im-

plementations in the following way. Until there are less than k0 modifications to

an array element, the modifications are stored in the variant (A) of exponential

tree from Theorem 4.7. When there are more than k0 modifications to an array

element, we utilize the original representation instead. In the amortized variant

we switch to the required representation immediately. In the worst-case variant

we start building the required representation gradually in k0 steps, inserting two

modifications at a time, and use the existing representation until the required

one is finished. In both cases, the change of the representation does not increase

asymptotic complexity of the array update, because for Θ(k0) modifications, both

representations are equally efficient.

Consequently, the complexity of array operations is the better one out of

O(
√

log k/ log log k) and the complexity of the original implementation.

5.6 Garbage Collection of a Persistent Array

When a data structure is used in a functional language, usually a garbage collector

is used to free the unused data. During the garbage collection, structures still

5.6. GARBAGE COLLECTION OF A PERSISTENT ARRAY 79

reachable by the program are marked and all remaining structures are freed.

At first consider a persistent array containing numbers. During the garbage

collection, the garbage collector identifies the reachable array versions. Neverthe-

less, we cannot remove all other array versions, because there are dependencies

between the versions – only one element modification is associated with a version,

yet all array elements can be accessed using this version, i.e., another n− 1 array

versions are accessible using a single array version. An example is illustrated in

Figure 5.3.

0

1

2

3

4a
rr
a
y
el
em

en
ts

0 1 2 3 4 5 6 7

array versions

Figure 5.3: Example of reachable array versions. The cross represents an element

modification. Even if only version 7 is marked as reachable by the garbage col-

lector, versions 0, 2, 3 and 5 can be accessed using array elements in version 7.

However, versions 1, 4 and 6 cannot be accessed any more and can be removed.

We call an array version purgeable if it is not marked as reachable by the

garbage collector and it cannot be accessed using any reachable array version.

We present an efficient, even if a bit subtle, algorithm for recognizing the

purgeable versions.

Theorem 5.11. If the garbage collector marks the reachable versions of a per-

sistent array of n elements with m modifications, we can identify the purgeable

versions in O(m) time, using O(n + m) space. The algorithm applies to all de-

scribed persistent array implementations.

Proof. Let v be a version modifying array element i. Its descendants in the

version tree are the versions between v+ and v− in the extended version list.

We call a descendant version u of version v captured, if it modifies index i or if

there exists a version w modifying index i and w is a descendant of v and ancestor

of u. In other words, if the order of these versions in the extended version list is

v+ w+ u+ u− w− v−.

It follows that if u is a captured descendant of v, v is not accessible using

a lookup on version u, because a lookup of the i-th element in version u returns the

80 CHAPTER 5. PERSISTENT ARRAYS

modification introduced by either u itself or w. Therefore, version v is purgeable,

if all reachable descendant versions are captured.

To recognize purgeable versions, we traverse the version list from left to right,

counting for each version v both the number of reachable descendants (nrv) and

the number of captured reachable descendants (ncv). We use a stack and an

array p of n elements, which are initially empty.1 When we encounter a version

v+ modifying the index i, we

• push v and p[i] to the stack,

• set p[i]← v.

When we encounter a version v−, we

• reset p[i] to the value on the top of the stack,

• remove the p[i] and v from the stack,

• classify v as purgeable iff ncv = nrv,

• add the number of reachable versions between v+ and v− (inclusive, i.e.,

nrv or nrv + 1, depending on whether v itself is reachable) to the parent of

v, if any, which is on the top of the stack,

• if p[i] is not empty, the reachable descendants of v (including v) are captured

descendants of p[i], therefore, we increase ncp[i] by the number of reachable

versions between v+ and v−.

The algorithm works in linear time and space. Its correctness can be estab-

lished by a straightforward induction on the subtrees of the version tree in the

order these trees are left by a depth first search.

Nevertheless, this algorithm can be applied only when the array elements do

not need to be examined by the garbage collector, e.g., if the array elements are

non-referential types like numbers or characters.

If the array elements contain references to other structures, we have to aug-

ment the garbage collector to be able to recognize versions reachable from a given

version. In the context of persistent arrays, if we are given version v, we have to

identify all versions that can be returned during a lookup of any array element in

the version v, or in other words, the predecessors of v among the modifications

for every array element.

1After the algorithm finishes, all elements of p are empty again. Therefore, the same array

can be reused many times and we do not include its initialization in the time complexity of

the described algorithm, because p can be initialized when the persistent array itself is created.

5.6. GARBAGE COLLECTION OF A PERSISTENT ARRAY 81

It is straightforward to return all versions reachable from a given array version

in time O(n log log m + nS(m)). Nevertheless, the resulting garbage collection

algorithm would be very inefficient, taking more than Ω(nm) time to process the

whole array. Instead of returning all versions reachable from a given array version,

we should return only the versions not yet processed by the garbage collector.

Theorem 5.12. Consider a persistent array of n elements with m modifications.

We can implement the following unreported reachable versions operation: for

a given array version, return all versions reachable from this version (via lookup

on any array element), omitting the versions that have been returned previously.

The time complexity of d such operations is O(d + m log n) and the space usage

is O(m log n).

Proof. We start with a preprocessing, whose goal is, for each array version v, to

create an ascendant tree, a tree of n versions reachable from version v. Specifically,

for array version v, the i-th element of the ascendant tree is the version which

is the (inclusive) predecessor of v among the versions modifying the i-th array

element. In other words, it is the version whose associated element modification

is returned during a lookup of the i-th array element in version v.

We represent the ascendant trees as partially persistent complete binary trees

with n leaves, created using the path copying method of Section 2.1. We construct

the ascendant trees successively for the versions in the version list, from the first

to the last. The ascendant tree of the first version v0 of the version list contains n

times the version v0. To create an ascendant tree of version v modifying index i,

we update the ascendant tree of the previous version by changing its i-th leaf

to v. Because we modify exactly one ascendant tree element in every step, all the

ascendant trees have O(n + m log n) nodes.

We can decrease the number of nodes a bit. We create a unique node n0, which

represents an arbitrary large tree with leaves containing version v0. Therefore, the

ascendant tree of the version v0 is represented using just the node n0. During the

construction, the node n0 can appear anywhere in the ascendant tree. Because

the ascendant trees have a fixed shape, the size of tree represented by n0 is defined

by the position of n0 within the ascendant tree. Therefore, all the ascendant trees

now have a total of O(m log n) nodes and the preprocessing takes O(m log n) time

and space.

In order to facilitate skipping of already reported versions, every ascendant

tree node has an associated state, either unreported or reported. We maintain the

following invariant: a leaf is marked as reported iff the version it contains has

82 CHAPTER 5. PERSISTENT ARRAYS

already been reported, and an internal node is marked as reported iff all leaves

in its subtree have been reported.

To perform the reported reachable versions operation, we walk through the

appropriate ascendant tree, not visiting children of a node marked as reported,

and return the versions in unreported leaves. If u such versions are returned, the

complexity of this search is O(u log n), because every unreported internal node

has at least one unreported leaf and there are O(log n) predecessors for every

leaf. Because every version is reported at most once, time needed to report all

versions is O(m log n).

After finding the unreported versions, we have to update the status of other

ascendant tree nodes to restore the invariant. We do so by marking all leaves

containing the unreported versions as reported. For each such leaf, we also recur-

sively check whether the other child of its parent is reported, and if so, we mark

the parent as reported and continue with the recursion. Because every node is

marked at most once, all the status changes are performed in O(m log n) time.

Therefore, the overall complexity of performing the unreported reachable ver-

sions operation d times is O(d + m log n) using O(m log n) space.

We are now able to identify the purgeable versions during the garbage collect-

ing phase, either in O(m) time by using more effective Theorem 5.11 for arrays

not containing references, or in O(m log n) time by using Theorem 5.12 for arrays

containing references.

Nevertheless, removing the versions from the persistent array causes several

complications. Firstly, the list labelling must support deletions, which can be

accomplished by requiring a lower bound on the density of used labels in addition

to the upper bound. Secondly, the number of sublists in the list order problem

must remain Θ(m/ log m), by merging adjacent small sublists and by splitting

sublists which were not added to, but got too big because many versions have

been removed. Lastly, the number of buckets must be Θ(m/ log m). In addition

to that, the Invariant 1 must be maintained. Although all these problems can be

overcome, it would require solving a lot of technical details.

Instead, we rebuild the whole array, inserting only the reachable versions.

This can be done in O(m) time. Because we already spent Ω(m) time on rec-

ognizing the purgeable versions, the rebuild does not increase asymptotic com-

plexity. Alternatively, if we are performing the version tree splitting described

in Section 5.5, we can integrate it with the removal of the unreachable versions

– during the garbage collection we only mark unreachable versions and we leave

them out during the splitting of the array.

5.6. GARBAGE COLLECTION OF A PERSISTENT ARRAY 83

5.7 Chapter Notes

This chapter is based on [Str09] and contains original results, most notably:

• worst-case fully persistent array implementation, Sections 5.4 and 5.5,

• persistent array garbage collection algorithms, Section 5.6.

84 CHAPTER 5. PERSISTENT ARRAYS

Part II

Purely Functional

Data Structures

85

Chapter 6

Persistent Array Implementation

Although the theoretical construction of fully persistent array described in Chap-

ter 5 is nearly optimal, there is no guarantee that the resulting implementation

is fast in practice. There are many parameters that must be taken into account

– what is the real constant of the asymptotic time complexity and how big per-

sistent arrays are usually being used.

In this chapter we try to find the best Haskell implementation of a fully per-

sistent array, using benchmarking to compare speed of various implementations.

For the sake of comparison we also include the non-persistent implementation

and the standard data structures that can be used as a persistent array.

Our goal is to provide a genuine fully persistent structure which is used when

many versions of the array are accessed and updated. Therefore, we provide

no optimizations for the case the array is used single-threadedly. In such case,

it is better to use an array in the ST monad [LPJ94], which can be updated

destructively in-place.

6.1 Fully Persistent Array Implementation

The theoretical construction described in Chapter 5 is very likely not suitable for

real implementation, for a combination of two reasons. The constant hidden in

the asymptotic complexity is quite high, because of the dynamic integer sets and

maintenance of the version labels. This could be compensated by a big difference

in asymptotic complexity, but not in our case. The size of persistent arrays used

in practice is almost certainly limited by n ≤ 232 elements. Nevertheless, the

ratio of log n and (log log n)2

log log log n
for n ≤ 232 is at most 2.97, which is too little.

We therefore focus on O(log n) implementations using path copying method

of Section 2.1. Such implementations can be purely functional, avoid maintaining

87

88 CHAPTER 6. PERSISTENT ARRAY IMPLEMENTATION

7 8 91 2 3 4 5 6 10 11 12 13 14

Figure 6.1: Example of persistent array with 14 elements represented using

a ternary tree

the version list and can be garbage collected without any additional effort. In

addition, the logarithmic complexity is asymptotically optimal if an array is rep-

resented using a linked data structure, i.e., using nodes with limited out-degree.

We represent persistent array with n elements using a tree with branching

factor b. The array elements are leaves of the tree, they are on the same bottom

level and a full tree is built on these leaves, i.e., all internal nodes have b subtrees,

with the exception of the right spine of the tree. An example of a ternary tree

representing a persistent array with 14 elements is displayed in Figure 6.1.

To implement the index operation, we start at the root, navigating in each

step to a subtree containing the required element, until reaching the leaf contain-

ing the searched element. The complexity of the operation is O(logb n).

In order to update an element, we search for it in the same way, create a leaf

with the new value and update the internal nodes visited during the search by

copying them and updating the pointer to the modified subtree. Therefore, the

update operation has O(b · logb n) complexity.

We can also implement growing and shrinking of the array, by adding and

removing leaves and suitable internal nodes of the tree.

To achieve good performance, the choice of b is important. Suitable form of b

is a power of two, because then we can find the subtree containing the required

element using only bit operations, instead of modulus and division.

An exemplary implementation of a persistent array using a tree with branching

factor 4 follows. We start by a data type for persistent array, which consists of

an array size, the zero based number of levels of the tree and the spine strict tree.

Every node in the tree has always 4 elements, but only the first size leaves and

corresponding internal nodes are guaranteed to be initialized.

data Array a = Array { size :: !Int, levels :: !Int, nodes :: !(Nodes a) }

data Nodes a = Nodes { n0 :: !(Nodes a), n1 :: !(Nodes a)

, n2 :: !(Nodes a), n3 :: !(Nodes a) }

| Elems { e0 :: a, e1 :: a, e2 :: a, e3 :: a }

6.1. FULLY PERSISTENT ARRAY IMPLEMENTATION 89

We use several helper methods for accessing and updating the Nodes data

type. We define them to be able to improve the implementation further ahead.

indexNode :: Int -> Nodes a -> Nodes a; {-# INLINE indexNode #-}

indexNode 0 ns = n0 ns; indexNode 1 ns = n1 ns

indexNode 2 ns = n2 ns; indexNode _ ns = n3 ns

indexElem :: Int -> Nodes a -> a; {-# INLINE indexElem #-}

indexElem 0 es = e0 es; indexElem 1 es = e1 es

indexElem 2 es = e2 es; indexElem _ es = e3 es

updateNode :: Int -> Nodes a -> Nodes a -> Nodes a; {-# INLINE updateNode #-}

updateNode 0 ns val = ns {n0 = val}; updateNode 1 ns val = ns {n1 = val}

updateNode 2 ns val = ns {n2 = val}; updateNode _ ns val = ns {n3 = val}

updateElem :: Int -> Nodes a -> a -> Nodes a; {-# INLINE updateElem #-}

updateElem 0 es val = es {e0 = val}; updateElem 1 es val = es {e1 = val}

updateElem 2 es val = es {e2 = val}; updateElem _ es val = es {e3 = val}

Using these methods, we define the persistent array methods index and

update without knowing the representation of Nodes:

index :: Int -> Array a -> a

index i a | i < 0 || i >= size a = error "Out of bounds"

| otherwise = index’ (levels a) (nodes a)

where index’ _ es@(Elems {}) = indexElem (i .&. 3) es

index’ l ns@(Nodes {}) =

index’ (l-1) $ indexNode ((i ‘shiftR‘ (2*l)) .&. 3) ns

update :: Int -> a -> Array a -> Array a

update i val a | i < 0 || i >= size a = error "Out of bounds"

| otherwise = a { nodes = update’ (levels a) (nodes a) }

where update’ _ es@(Elems {}) = updateElem (i .&. 3) es val

update’ l ns@(Nodes {}) =

let node = (i ‘shiftR‘ (2*l)) .&. 3

in updateNode node ns $ update’ (l-1) (indexNode node ns)

We also provide a method for creating a new array of given size, all elements

initialized to a given value:

create :: Int -> a -> Array a

create size val = build 0 (Elems val val val val)

where build l n

| size <= 4 ‘shiftL‘ (2*l) = Array { size=size, levels=l, nodes=n }

| otherwise = build (l+1) (Nodes n n n n)

The resulting implementation can be trivially modified to use a different

branching factor in a form of power of two and provide additional operations.

90 CHAPTER 6. PERSISTENT ARRAY IMPLEMENTATION

6.2 Choosing the Best Branching Factor

To complete our implementation, most suitable branching factor must be chosen

to minimize the update operation complexity of O(b · logb n). When considering

the formula only, it is simple to check that the optimal value of b is e. Nevertheless,

there are various different costs in the real implementation and therefore we use

benchmarking to find the best value of b.

We used the criterion package [PkgCrit], a commonly used Haskell bench-

marking framework. All benchmarks were performed on a dedicated machine

with Intel Xeon processor and 4GB RAM, using 32-bit GHC 7.4.1. Detailed de-

scription of the benchmarking process used by the criterion package can be

found in Section 8.2.1.

We performed two benchmarks, an index benchmark and an update bench-

mark. In the index benchmark we sequentially accessed all elements of the array

without modifying them. In the update benchmark we sequentially modified

all elements of the array. One implementation is chosen as a baseline and the

execution times are normalized with respect to the selected baseline. For each

implementation and each input, the mean time of 100 iterations is displayed, to-

gether with 95% confidence interval (which is usually not visible on the graphs

as it is nearly identical to the mean). Each benchmark consists of several inputs.

The size of input data is always measured in binary logarithms (so the input of

size 10 contains 1024 elements). For every implementation a geometric mean of

all times is computed and displayed in the legend. The implementations except

for the baseline are ordered according to this mean. The detailed results and the

benchmark itself are attached to this thesis and also available on the author’s

website http://fox.ucw.cz/papers/.

We benchmarked the following persistent array implementations:

• Tree_C2, Tree_C4, Tree_C8, Tree_C16, Tree_C32, Tree_C64: the imple-

mentation from Section 6.1 using a tree with a given branching factor.

• Tree_A2, Tree_A4, Tree_A8, Tree_A16, Tree_A32, Tree_A64: the preced-

ing implementation has one inefficiency – the indexNode and indexElem

methods do not run in constant time.1 They need to perform the pattern

matching according to the given index and then execute one of the method

bodies returning the appropriate element. It would be better if there was

only one body of indexElem returning the element asked for.

1At least not in GHC. But even if some smart optimization was performed by a compiler,

indexNode would still most likely still need to perform some slow conditional jump.

6.2. CHOOSING THE BEST BRANCHING FACTOR 91

Also the updateNode and updateElem suffer from the same needless pattern

matching problem.

One way to solve this problem is to change the representation of Nodes a

– the nodes and elements could be stored in an array instead of directly

in the Nodes a constructor. That way the indexNode and updateNode

methods could access the i-th element directly without pattern matching.

This implementation indeed improves the index benchmark. Nevertheless,

the updates of the array are quite slow in GHC and we decided not to

include this implementation in the benchmarks because it is always worse

then the following implementation.

Our solution to this inefficiency is providing the optimal indexNode and

indexElem as primitives.2 These primitives can access an i-th data con-

structor element using i as memory offset. We also provide improved

updateNode and updateElem as primitives.

• Monolithic: a monolithic array [Wad87] from the standard array pack-

age. Although it is persistent, the whole array is copied during every update.

Therefore, this array implementation is useful when we perform no or little

array modifications. We call this implementation “read-only” further on.

• ArrayST: a non-persistent array also from the standard array package,

featuring destructive updates in the ST monad [LPJ94]. Although the array

is not persistent, we include it in our benchmark as a reference to see what

is the overhead of the persistent implementations.

• IntMap: a persistent structure associating Int keys with values. The struc-

ture is described in Section 8.1.2 and is present in standard libraries. It

is chosen as a baseline of the benchmark as it is the best persistent array

implementation available in every Haskell installation.

• Seq: a persistent structure with broad functionality, also present in the

standard library. It is based on 2-3 finger trees annotated with sizes [HP06]

and is further described in Section 8.1.3.

The results of the benchmarks are displayed in Figure 6.2. The improved

Tree_A implementations are superior to Tree_C implementations as expected, so

we consider only those in the further discussion.

2At the moment, these “primitives” are still implemented in Haskell, bypassing the type

checker. The implementation is highly experimental and GHC specific. If these methods

establish their usefulness, they can be added as primitives to the compiler itself.

92 CHAPTER 6. PERSISTENT ARRAY IMPLEMENTATION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0
6

1
0

1
4

1
8

n
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t
im

e
1.5 2.2 2.5 2.5

Array: index

IntMap(100%)
Monolithic(8.6%)
ArrayST(12.3%)

Tree_A64(18.7%)

Tree_A32(22.1%)
Tree_A16(26.4%)
Tree_A8(30.6%)
Tree_A4(40.9%)

Tree_C64(45.0%)
Tree_C32(48.5%)
Tree_C16(48.8%)
Tree_C8(49.8%)

Tree_C4(59.1%)
Tree_A2(76.1%)
Tree_C2(98.9%)

Seq(212.3%)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0
6

1
0

1
4

1
8

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

1.1 1.5 1.8 2.2

Array: update

IntMap(100%)
ArrayST(3.9%)

Tree_A8(31.9%)
Tree_A4(34.3%)

Tree_C8(36.6%)
Tree_C4(38.9%)

Tree_A16(39.2%)
Tree_C16(43.0%)

Tree_A32(48.3%)
Tree_C32(55.0%)
Tree_A64(60.4%)
Tree_A2(66.4%)

Tree_C2(66.5%)
Tree_C64(81.1%)

Seq(159.7%)

Figure 6.2: Benchmarks of persistent array implementations

6.2. CHOOSING THE BEST BRANCHING FACTOR 93

In the index benchmark, the larger values of b perform better. If the indexing

speed if the most pressing concern, indexing using the persistent array implemen-

tation with branching factor 64 is 2.2 times slower than indexing a non-persistent

read-only array and only 1.5 times slower than indexing a non-persistent modifi-

able array.

In the update benchmark, the effect of different b on performance is nicely

visible. The choices of b from the most effective are 8, 4, 16, 32, 64 and 2.

Updating the persistent array with branching factor 8 is 8.2 times slower than

updating a non-persistent array and indexing is 2.5 times slower.

6.3 Chapter Notes

In this chapter we present a persistent array implementation, which is to our

knowledge fastest one available. These are original results.

Our implementation is fully persistent. However, there are many different ar-

ray implementations which are either non-persistent, partially persistent or fully

persistent but require some specific usage pattern to achieve good performance.

The implementations of the latter kind include the diffarray package, a for-

merly standard library, implementing partially persistent array. The index and

update time of the most recent version of the array are constant and accesses to

the older versions get gradually slower. Another examples include the shallow

binding of Baker [Bak91], which extends this scheme into a fully persistent one.

This work was subsequently extended in Chuang [Chu92] and further improved

in Chuang [Chu94]. A similar approach was taken by O’Neill and Burton [OB97]

which supports constant lookup complexity under the condition of uniformity of

access.

94 CHAPTER 6. PERSISTENT ARRAY IMPLEMENTATION

Chapter 7

BB-ω Trees

Balanced binary search trees are probably the most important persistent data

structure. Any balanced binary tree with worst-case bounds can be made fully

persistent using the path copying method of Section 2.1. The resulting persistent

search tree has the same time bounds as the original, but its memory complexity

is usually increased and matches its time complexity as a result of copying every

node on a path to the node being modified.

There are many worst-case balanced binary search trees we can base the persis-

tent variant on, e.g., AVL trees [AVL62], red-black trees [GS78] or B-trees [BM72],

to mention the most common ones. Nevertheless, the popular choice for im-

plementing purely functional persistent binary search trees are Adams’ trees.

Adams’ trees, or trees of bounded balance ω, shortly BB-ω trees, were introduced

in [Ada92] and [Ada93]. They are used in Haskell to implement the Data.Map

and Data.Set modules, which are part of the standard data structure library

containers [PkgCont]. BB-ω trees are also used in data structure libraries in

Scheme and SML.

The balance condition of BB-ω trees utilizes subtree sizes. Namely, in every

node of BB-ω tree, the sizes of subtrees must differ at most by a factor of ω. This

balance condition guarantees logarithmic depth, which is asymptotically optimal.

The BB-ω trees have several properties which make them a suitable choice for

implementing persistent search trees:

• The elegant balance condition and simple rebalancing results in simple re-

cursive implementation with very few special cases.

• The sizes of subtrees can be used not only during rebalancing, but also for

providing additional functionality, e.g., to access the i-th smallest element

in the tree in logarithmic time and to compute the size of the whole tree in

constant time.

95

96 CHAPTER 7. BB-ω TREES

• The performance of BB-ω trees is slightly better than the performance of

AVL trees [AVL62] and red-black trees [GS78], see Chapter 8 for measure-

ments.

The correctness proof (published in [Ada92]) has serious flaws – it wrongly

handles restoring balance condition after delete. Moreover, if the balance after

delete is analysed correctly using only the techniques from [Ada92], the outcome

is that the BB-ω trees cannot restore balance in all cases, which we show is not

true.

Error in the proof manifested in several implementations, most notably in the

containers package, by violating the balance of the tree after specific delete

operations. The problem was discovered independently by us (it was mentioned in

a personal communication to Simon Peyton Jones in March 2010) and by Taylor

Campbell [Cam].

This chapter contains the following:

• We describe BB-ω trees and provide a simple implementation of basic op-

erations in the Haskell programming language [PJ+03]. More complete and

more efficient implementation is discussed in next Chapter 8.

• We present a correctness proof of BB-ω trees. In particular, we investigate

the space of parameters of all BB-ω trees of size up to one million, and

choose several candidates from this space: all parameters that are integral

and also parameters guaranteeing trees with smallest depth. We then prove

correctness for these candidates. Our analysis guarantees trees with lower

depths than the original one and also considers previously ignored join

operation.

• We show that the depth of BB-ω trees is better than the known upper bound.

• Because the BB-ω trees are parametrized, we perform several benchmarks

to find the best choice of parameters.

• In order to save memory, we evaluate the technique of introducing additional

data constructor representing a tree of size one. This allows us to save 20-

30% of memory and even decreases the time complexity.

7.1 BB-ω Trees

We expect the reader to be familiar with binary search trees, see [Knu98] for

a comprehensive introduction.

7.1. BB-ω TREES 97

Definition 7.1 (Original). A binary search tree is a tree of bounded balance ω,

denoted as BB-ω tree, if in each node the following balance condition holds:

size of the left subtree ≤ ω · size of the right subtree ,

size of the right subtree ≤ ω · size of the left subtree ,

if one subtree is empty, the size of the other one is at most 1 .

(7.1)

Consider a BB-ω tree of size n. According to the balance condition, the size of

its left subtree is at most ω times the size of its right subtree, therefore, the size of

the left subtree is at most ω
ω+1

n. It follows that the size of a BB-ω tree decreases

by at least a factor of ω
ω+1

at each level, which implies that the maximum depth of

a BB-ω tree with n nodes is bounded by log(ω+1)/ω n = 1
log2(1+1/ω)

log2 n. Detailed

analysis is carried out in Section 7.4.

The exception for empty subtrees in the definition of balance condition is not

elegant, but from the implementator’s point of view it is of no concern – empty

subtrees are usually represented by a special data constructor and are treated

differently anyway. Nevertheless, some modifications to the balance condition

have been proposed to get rid of the special case – most notably to use the size of

a subtree increased by one, which was proposed in [NR72]. We therefore define

and use a generalized version of the balance condition, which comprises both

mentioned cases.

Definition 7.2 (Generalized). A binary search tree is a tree of bounded balance ω,

denoted as BB-ω tree, if in each node the following balance condition holds:

size of the left subtree ≤ max(1, ω · size of the right subtree + δ) ,

size of the right subtree ≤ max(1, ω · size of the left subtree + δ) .
(7.2)

The parameter δ is a nonnegative integer and if it is positive, the special case

for empty subtrees is no longer necessary. Notice that the definition with sizes

increased by one is equivalent to the generalized balance condition with δ = ω−1.

An implementation of a BB-ω tree needs to store the size of a subtree of every

node, which results in the following data-type:

data BBTree a = Nil -- empty tree

| Node -- tree node

(BBTree a) -- left subtree

Int -- size of this tree

a -- element stored in the node

(BBTree a) -- right subtree

We also provide a function size and a smart constructor node, which constructs

a tree using a left subtree, a key, and a right subtree. The balance condition is

not checked, so it is upon the caller to ensure its validity.

98 CHAPTER 7. BB-ω TREES

size :: BBTree a -> Int

size Nil = 0

size (Node _ s _ _) = s

node :: BBTree a -> a -> BBTree a -> BBTree a

node left key right = Node left (size left + 1 + size right) key right

7.1.1 BB-ω Tree Operations

Locating an element in a BB-ω tree works as in any binary search tree:

lookup :: Ord a => a -> BBTree a -> Maybe a

lookup k Nil = Nothing

lookup k (Node left _ key right) = case k ‘compare‘ key of

LT -> lookup k left

EQ -> Just key

GT -> lookup k right

When adding and removing the tree elements, we need to ensure the valid-

ity of the balance condition. We therefore introduce another smart constructor

balance with the same functionality as node, which in addition ensures the

balance condition. To achieve efficiency, certain conditions apply when using

balance. We postpone further details until Section 7.2.

With such a smart constructor, the implementation of insert and delete

is straightforward. Assuming the balance smart constructor works in constant

time, insert and delete have logarithmic time complexity.

insert :: Ord a => a -> BBTree a -> BBTree a

insert k Nil = node Nil k Nil

insert k (Node left _ key right) = case k ‘compare‘ key of

LT -> balance (insert k left) key right

EQ -> node left k right

GT -> balance left key (insert k right)

delete :: Ord a => a -> BBTree a -> BBTree a

delete _ Nil = Nil

delete k (Node left _ key right) = case k ‘compare‘ key of

LT -> balance (delete k left) key right

EQ -> glue left right

GT -> balance left key (delete k right)

where glue Nil right = right

glue left Nil = left

glue left right

| size left > size right = let (key’, left’) = extractMax left

in node left’ key’ right

7.2. REBALANCING BB-ω TREES 99

| otherwise = let (key’, right’) = extractMin right

in node left key’ right’

extractMin (Node Nil _ key right) = (key, right)

extractMin (Node left _ key right) = case extractMin left of

(min, left’) -> (min, balance left’ key right)

extractMax (Node left _ key Nil) = (key, left)

extractMax (Node left _ key right) = case extractMax right of

(max, right’) -> (max, balance left key right’)

When representing a set with a binary search tree, additional operations be-

sides inserting and deleting individual elements are needed. Such an operation is

join. The join operation is also a smart constructor – it constructs a tree using

a key and left and right subtrees. However, it poses no assumptions on the sizes of

given balanced subtrees and produces a balanced BB-ω tree. The join operation

is useful when implementing union, difference and other set methods.

By utilizing the balance smart constructor once more, it is straightforward

to implement the join operation. Again, assuming balance works in constant

time, join runs in logarithmic time.

join :: BBTree a -> a -> BBTree a -> BBTree a

join Nil key right = insertMin key right

where insertMin key Nil = Node Nil 1 key Nil

insertMin key (Node l _ k r) = balance (insertMin key l) k r

join left key Nil = insertMax key left

where insertMax key Nil = Node Nil 1 key Nil

insertMax key (Node l _ k r) = balance l k (insertMax key r)

join left@(Node ll ls lk lr) key right@(Node rl rs rk rr)

| ls > omega * rs + delta = balance ll lk (join lr key right)

| rs > omega * ls + delta = balance (join left key rl) rk rr

| otherwise = node left key right

7.2 Rebalancing BB-ω Trees

We restore balance using well-known single rotations and double rotations. These

are depicted in Figure 7.1. The code for these rotations is straightforward, the

L or R suffix indicates the direction of the rotation (both rotations illustrated in

Figure 7.1 are to the left).

Because we want the balance function to run in constant time, we introduce

the following assumption – the balance can be used on subtrees that previous-

ly fulfilled the balance condition and since then one insert, delete or join

100 CHAPTER 7. BB-ω TREES

B C

c

b

D

a

A
B C

c

a

A

b

D

C D

b

c

A B

a

sin
gle

ro
ta

tio
n

double rotation

singleL l k (Node rl _ rk rr) = node (node l k rl) rk rr

singleR (Node ll _ lk lr) k r = node ll lk (node lr k r)

doubleL l k (Node (Node rll _ rlk rlr) _ rk rr) =

node (node l k rll) rlk (node rlr rk rr)

doubleR (Node ll _ lk (Node lrl _ lrk lrr)) k r =

node (node ll lk lrl) lrk (node lrr k r)

Figure 7.1: Single and double rotations

operation was performed. So far all implementations fulfilled this condition.

Using this assumption, the balance function restores balance using either

a single or a double rotation – but a question is which one to choose. If we

perform a left rotation as in Figure 7.1, a double rotation split the left child

of the right subtree into two subtrees, but a single rotation keeps it unaffected.

Therefore, we choose the type of a rotation according to the size of the left child

of the right subtree.

Formally, we use a parameter α,1 which we use as follows: When we want

to perform a left rotation, we examine the right subtree. If the size of the left

subtree is strictly smaller than α-times the size of the right subtree, we perform

a single rotation, and otherwise a double rotation. The implementation follows:

balance :: BBTree a -> a -> BBTree a -> BBTree a

balance left key right

| size left + size right <= 1 = node left key right

| size right > omega * size left + delta = case right of

(Node rl _ _ rr) | size rl<alpha*size rr -> singleL left key right

| otherwise -> doubleL left key right

| size left > omega * size right + delta = case left of

(Node ll _ _ lr) | size lr<alpha*size ll -> singleR left key right

| otherwise -> doubleR left key right

| otherwise = node left key right

1Our α is the inverse of α from [Ada92].

7.3. CHOOSING THE PARAMETERS ω, α AND δ 101

7.3 Choosing the Parameters ω, α and δ

We call the parameters (ω, α, δ) valid, if balance can always restore the balance

condition after one insert, delete or join operation.

Ideally we would classify all parameters (ω, α, δ) as either valid or not valid,

but it is difficult to come up with complete characterization. The reason is that

when dealing with small trees, rebalancing relies on the fact that all subtrees have

integral sizes – i.e., it is fine that node with subtrees of sizes 1.5 and 2.5 cannot

be rebalanced, because it does not exist.

Instead of a complete characterization, we therefore rule out parameters which

are definitely not valid and then prove the validity only for several chosen param-

eters. It is easy to see that ω ≥ 5 and ω = 2 are not valid for any α in the sense

of the original balance condition, i.e., with δ = 0: In the situation in Figure 7.2

neither single nor double rotation can restore balance.

To get a more accurate idea, we evaluated validity of parameters on all trees

up to size of 1 million – the results are displayed in Figure 7.3. The code used to

generate this figure is listed in Attachment A.1.

When choosing the parameters, the value of ω is the most important, because

it defines the height of the tree. On the other hand, the value of α is quite

unimportant – it affects only the internal implementation of balance. The value

of δ is kept as low as possible, since higher values of δ increases imbalance of

BB-ω trees, especially the small ones.

After inspection of Figure 7.3 we have chosen integer parameters (ω = 3, α =

2, δ = 0) and (ω = 4, α = 2, δ = 0) and also parameters (ω = 2.5, α = 1.5, δ = 1),

where the value of ω is the smallest possible. The last parameters are not integral,

but we can perform multiplication by ω or α using right bit shift.

7.3.1 Validity of ω = 2.5, ω = 3 and ω = 4

We now prove the validity of chosen parameters (ω = 2.5, α = 1.5, δ = 1),

(ω = 3, α = 2, δ = 0) and (ω = 4, α = 2, δ = 0). Because the values of α and

δ are determined by ω, we identify these sets of parameters only by the value

of ω.

n m

Consider performing balance after balance is lost. Without loss

of generality, assume the right subtree is the bigger one and denote n

and m the sizes of the left and right subtrees, respectively. We use the

notation of the tree size and the tree itself interchangeably.

Because balance is lost, we have ωn + δ < m. The insert operation causes

102 CHAPTER 7. BB-ω TREES

sin
gle

rotatio
n

double rotation

sin
gle

rotatio
n

double rotation

ω = 2 ω ≥ 5

Figure 7.2: Parameters ω = 2 and ω ≥ 5 are not valid for any α and δ = 0

1

1 1

8

1 1

4

1 3

8

1 1

2

1 5

8

1 3

4

1 7

8

2

2 1

8

2 1

4

2 3

8

2 1

2

2 5

8

2 3

4

2 7

8

3

2 2 1

8
2 1

4
2 3

8
2 1

2
2 5

8
2 3

4
2 7

8
3 3 1

8
3 1

4
3 3

8
3 1

2
3 5

8
3 3

4
3 7

8
4 4 1

8
4 1

4
4 3

8
4 1

2
4 5

8
4 3

4
4 7

8
5

1

1 1

8

1 1

4

1 3

8

1 1

2

1 5

8

1 3

4

1 7

8

2

2 1

8

2 1

4

2 3

8

2 1

2

2 5

8

2 3

4

2 7

8

3

2 2 1

8
2 1

4
2 3

8
2 1

2
2 5

8
2 3

4
2 7

8
3 3 1

8
3 1

4
3 3

8
3 1

2
3 5

8
3 3

4
3 7

8
4 4 1

8
4 1

4
4 3

8
4 1

2
4 5

8
4 3

4
4 7

8
5

Figure 7.3: The space of (ω, α, δ) parameters. The values of ω and α are displayed

on the x and y axis, respectively. Every dashed square consists of four smaller

squares, which correspond to the δ values 0
2

1
3
. Black denotes non-valid parameters,

white denotes parameters which are valid for trees of size up to 1 million. For

example, when ω = 4 and α = 2, δ ∈ {0, 3} is valid and δ ∈ {1, 2} is not valid.

The code used to generate this figure is listed in Attachment A.1.

7.3. CHOOSING THE PARAMETERS ω, α AND δ 103

imbalance by exactly one element, so it is never worse than imbalance caused by

a delete operation. Therefore, we have to consider only two possibilities how

the imbalance was caused – by delete or join operation. If the last operation

was delete, we know that ωn + δ ≥ m− ω. If the last operation was join with

the subtree of size z, we know that ωn + δ ≥ m− z. During the join operation

the tree z was small enough to be recursively joined with subtree m, so we have

ωz + δ < n + 1 + (m− z), so z < n+1+m−δ
ω+1

and therefore m− n+m+1−δ
ω+1

< ωn + δ,

m < ω+1
ω

(

ωn + δ + n+1−δ
ω+1

)

, m < ω+1
ω

(

ωn + n+ωδ+1
ω+1

)

, m <
(

ω + 1 + 1
ω

)

n+δ+ 1
ω

.

To summarize:

m
(A)
> ωn + δ , m− ω

(Bdel)≤ ωn + δ , m
(Bjoin)

<
(

ω + 1 + 1
ω

)

n + δ + 1
ω

.

7.3.2 Correctness of a Single Rotation

Let x and y denote the subtrees of the tree m. We perform a single rotation iff

x < αy and in that case we have the following inequalities:

n
m

x y

y

n x

ωx + δ ≥ y ⇒ (ω + 1)x + δ
(C)

≥ m− 1 ,

x < αy ⇒ x
(D)
< α

α+1
(m− 1), y

(E)
> 1

α+1
(m− 1) .

At first we need to solve the cases where n, x or y are zero, as the balance

condition is different in that case. All such cases are shown in Figure 7.4.

Figure 7.4: Cases when n, x or y are zero and a single rotation is performed

In the case when all subtrees are nonempty, we need to validate the balance

condition in each of the two modified nodes:

• ωn + δ ≥ x after delete: x
(D)
< α

α+1
(m− 1)

(Bdel)≤ α
α+1

(ωn + δ + ω − 1)

• ωn+δ ≥ x after join: x
(D)
< α

α+1
(m−1)

(Bjoin)

< α
α+1

(

(ω + 1 + 1
ω

)n + δ + 1
ω
− 1

)

• ωx + δ ≥ n: n
(A)
< m−δ

ω

(C)

≤ ω+1
ω

x + 1
ω

• ω(n + 1 + x) + δ ≥ y: y ≤ ωx + δ

104 CHAPTER 7. BB-ω TREES

• ωy +δ ≥ n+1+x: n+1+x = n+m−y
(A)

≤ m−1
ω

+m−y = mω+1
ω
−y− 1

ω

(E)
<

((α + 1)y + 1)ω+1
ω
− y − 1

ω
= (α+1)(ω+1)−ω

ω
y + 1. Here we used the fact that

when ω is an integer, m
(A)

≥ ωn + δ + 1, so we have m
(A)

≥ ωn + 1.

The third and the fourth inequalities obviously hold. To see that also the

first, second and fifth inequalities hold, we evaluate the inequalities using chosen

values of ω.

ωn + δ ≥ x after delete ωn + δ ≥ x after join ωy + δ ≥ n + 1 + x

ω = 2.5 x < 3
2n + 3

2 x < 117
50 n + 6

25 n + 1 + x < 5
2y + 1

ω = 3 x < 2n + 4
3 x < 26

9 n− 4
9 n + 1 + x < 3y + 1

ω = 4 x < 8
3n + 2 x < 7

2n− 1
2 n + 1 + x < 11

4 y + 1

Table 7.1: Single rotation inequalities of BB-ω trees with w = 2.5, 3 and 4

As you can see in Table 7.1, the linear coefficients in the inequalities are

always less or equal the required ones. In some cases, the inequality itself does

not hold because of a large positive additive coefficient. Nevertheless, it is simple

to manually check that for such small n, no tree exists which would be unbalanced

after the call to balance. This is caused by the fact that the counterexamples

use non-integral subtree sizes.

7.3.3 Correctness of a Double Rotation

When performing a double rotation, we have the following inequalities:

n
m

x y

s t

n s t y

any child a of b⇒ (ω + 1)a + δ
(C)

≥ b− 1 ,

any child a of b⇒ (ω + 1)a
(D)

≤ ω(b− 1) + δ ,

x ≥ αy ⇒ x
(E)

≥ α
α+1

(m− 1), y
(F)

≤ 1
α+1

(m− 1) .

Once again we need to solve the cases when n, y, s or t are zero – we enumerate

these cases in Figure 7.5.

Figure 7.5: Cases when n, y, s or t are zero and a double rotation is performed

When all subtrees are nonempty, we modify three nodes, thus we have to

verify six inequalities:

7.3. CHOOSING THE PARAMETERS ω, α AND δ 105

• ωn+ δ ≥ s after delete: s
(D)

≤ ω
ω+1

(x−1 + δ
ω

)
(D)

≤ ω
ω+1

(ω
ω+1

(m−1 + δ
ω

)−1 +

δ
ω

)
(Bdel)≤ ω

ω+1
(ω

ω+1
(ωn+δ+ω−1+ δ

ω
)−1+ δ

ω
) = ω3

(ω+1)2 n+ ω3+δω2−ω2+δω
(ω+1)2 + δ−ω

ω+1

• ωn + δ ≥ s after join: s
(D)

≤ ω
ω+1

(x− 1 + δ
ω

)
(D)

≤ ω
ω+1

(ω
ω+1

(m− 1 + δ
ω

)− 1 +

δ
ω

)
(Bjoin)

< ω
ω+1

(ω
ω+1

((ω + 1 + 1
ω

)n + δ + 1
ω
− 1 + δ

ω
) − 1 + δ

ω
) = ω3+ω2+ω

(ω+1)2 n +
δω2−ω2+δω+ω

(ω+1)2 + δ−ω
ω+1

• ωs + δ ≥ n: n
(A)
< 1

ω
(m − δ)

(E)

≤ 1
ω

(α+1
α

x + 1 − δ)
(C)

≤ 1
ω

(α+1
α

((ω + 1)s + δ +

1) + 1− δ) = ω+1
ω

α+1
α

s + δ+1
ω

α+1
α

+ 1−δ
ω

• ωt + δ ≥ y: y ≤ x
α

(C)

≤ ω+1
α

t + δ+1
α

• ωy + δ ≥ t: t
(D)

≤ ω(x−1)+δ
ω+1

≤ ω(ωy+δ−1)+δ
ω+1

= ω2

ω+1
y + δ − ω

ω+1

• ω(n+1+s)+δ ≥ t+1+y after delete: ω(n+1+s)+δ ≥ ω(n+1)+t
(Bdel)≥

m− δ + t ≥ x− δ + 1 + y + t

• ω(n+1+s)+δ ≥ t+1+y after join: t+1+y ≤ ωs+δ +1+y
(F)

≤ ωs+δ +

1+ m−1
α+1

(Bjoin)

< ωs+δ +1+ (ω+1+ 1
ω

)n+δ+ 1
ω

−1

α+1
= ω2+ω+1

ω(α+1)
n+1+ ω(δ−1)+1

ω(α+1)
+ωs+δ

• ω(t + 1 + y) + δ ≥ n + 1 + s: n + 1 + s
(A)
< m

ω
+ 1 + s ≤ m

ω
+ 1 + ωt + δ

(C)

≤
ωt + δ + 1 + (ω+1)y+δ+1

ω
= ωt + ω+δ+1

ω
+ ω+1

ω
y + δ

All but the first three inequalities obviously hold for positive integral sizes.

In order to prove that the first three inequalities hold, we again evaluate the

resulting inequalities using chosen values of ω.

ωn + δ ≥ s after delete ωn + δ ≥ s after join ωs + δ ≥ n

ω = 2.5 s < 125
98 n + 103

98 s < 195
98 n− 1

49 n < 7
3s + 4

3

ω = 3 s < 27
16n + 3

8 s < 39
16n− 9

8 n < 2s + 5
6

ω = 4 s < 64
25n + 28

25 s < 84
25n− 32

25 n < 15
8 s + 5

8

Table 7.2: Double rotation inequalities of BB-ω trees with w = 2.5, 3 and 4

As you can see in Table 7.2, the linear coefficients in the inequalities are always

less or equal the required ones. Inequalities with positive additive coefficients hold

for the same reason as in the single rotation case – all such inequalities have linear

coefficient strictly smaller than required and a manual check concludes that the

inequalities hold even for small n using the fact that all tree sizes are integral.

This concludes the proof.

106 CHAPTER 7. BB-ω TREES

7.4 BB-ω Trees Height

If the balance condition holds and δ ≤ 1, we know that the size of a tree de-

creases by at least a factor of ω
ω+1

. Therefore, the maximum height of a tree is
1

log2(1+1/ω)
log2 n. But this is merely an upper bound – it is frequently the case

that the balance condition is not tight, because the tree sizes are integers.

To get an accurate estimate, we compute the maximum heights of BB-ω trees

up to size of 1 million. We can use the following recursive definition:

-- Returns the list [max height of BB-w tree with n elements | n <- [1..]].

heights :: Ratio Int -> Int -> [Int]

heights w d = result

where

result = 1 : 2 : compute_heights 3 1 result

compute_heights n r rhs@(rhs_head : rhs_tail)

| w*((n-1-(r+1))%1) + d%1 >= (r+1)%1 = compute_heights n (r+1) rhs_tail

| otherwise = 1 + rhs_head : compute_heights (n+1) r rhs

The function compute_heights is given the size of the tree n, the size of the its

right subtree r and also a list of maximum heights of BB-ω trees of r and more

elements. It constructs the highest tree of size n by using the largest possible

right subtree, and then using the highest tree of such size.

The resulting heights are presented in Table 7.3. The heights are divided by

⌈log2 n⌉, so the optimal height is 1. Notice that the height of a BB-2.5 tree is

always smaller than 2 for less than million elements – such height is better than

the height of a red-black tree of the same size.

size of BB-ω tree
height divided by ⌈log2 n⌉
ω = 2.5 ω = 3 ω = 4

10 1.33 1.33 1.33

100 1.57 1.67 1.86

1 000 1.70 1.90 2.30

10 000 1.84 2.00 2.54

100 000 1.86 2.13 2.63

1 000 000 1.90 2.16 2.70

upper bound 2.06 2.41 3.11

Table 7.3: Maximum heights of BB-ω trees with w = 2.5, w = 3 and w = 4

7.5. PERFORMANCE OF BB-ω TREES 107

7.5 Performance of BB-ω Trees

With various possible ω to use, the question of the effect of different ω values

arises. Is some value of ω universally the best one or does different usage patterns

call for specific ω values?

Evidently, smaller values of ω result in lower trees. That seems advantageous,

because the time complexity of many operations is proportional to the tree height.

In order to compare different values of ω, we measured the number of invoca-

tions of balance function. We inserted and then deleted 10{1..6} elements, in both

ascending and uniformly random order, and measured the number of invocations

of balance during each phase. The results are displayed in Table 7.4.

insert delete

w = 2.5 w = 3.0 w = 4.0 w = 2.5 w = 3.0 w = 4.0

consecutive 10 elements 25 25 26 11 12 10

random 10 elements 23 23 23 12 12 12

consecutive 102 elements 617 657 769 362 349 302

random 102 elements 542 549 562 377 376 413

consecutive 103 elements 10245 11439 13997 6554 6116 5500

random 103 elements 8700 8753 8953 7162 7177 7377

consecutive 104 elements 143685 163261 206406 94865 88487 79938

random 104 elements 121192 121623 124204 105251 105854 108362

consecutive 105 elements 1852582 2133997 2722419 1251621 1175569 1042398

random 105 elements 1554230 1562168 1595269 1395871 1402939 1434371

consecutive 106 elements 22701321 26336469 33878677 15492747 14429384 12974950

random 106 elements 18956075 19074599 19476673 17367930 17480730 17856278

Table 7.4: The number of balance calls during inserting and deleting elements

In case of ascending elements, smaller ω values perform better during inser-

tion, the difference between ω = 2.5 and ω = 4 is nearly 50% for large number

of elements. On the other hand, higher ω values perform better during deletion,

although the difference is only 18% at most. In case of random elements, lower

values of ω are always better, but the difference is less noticeable in this case.

We also performed the benchmark of running time of insert, lookup and

delete operations. We used the criterion package [PkgCrit], a commonly used

Haskell benchmarking framework. All benchmarks were performed on a dedicated

machine with Intel Xeon processor and 4GB RAM, using 32-bit GHC 7.0.1. De-

tailed description of the benchmarking process criterion uses is in Section 8.2.1.

The benchmarks are similar to our previous experiment – we insert, locate and

delete 10{1..6} elements of type Int, in both the ascending and uniformly random

108 CHAPTER 7. BB-ω TREES

 50

 60

 70

 80

 90

 100

 110

 120

 130

insert_asc

insert_rnd

lookup_asc

lookup_rnd

delete_asc

delete_rnd

fold_asc

fold_rnd

n
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

Tree2.5
TreeOne2.5

Tree3.0
TreeOne3.0

Tree4.0
TreeOne4.0

Figure 7.6: The normalized execution times of BB-ω trees with various ω

order. We used the improved implementation of balance from the containers

package which we describe in Chapter 8. The resulting execution times are nor-

malised with respect to one of the implementations and presented as percentages.

The overview is in Figure 7.6. (Ignore the trees with One subscript for now, they

are explained in the next section.) Here the geometric mean of running times for

all input sizes 101 to 106 is displayed. The detailed results for the individual input

sizes and also the benchmark itself are attached to this thesis and also available

on the author’s website http://fox.ucw.cz/papers/.

The findings are similar to the previous experiment – if the elements are in

random order, the value of ω makes little difference, smaller values performing

slightly better. In case of ascending elements, smaller ω are better when inserting

and larger when deleting. As expected, the lookup operation runs faster for

smaller values of ω, independently on the order of elements.

7.6. REDUCING MEMORY BY UTILIZING ADDITIONAL DATA CONSTRUCTOR 109

7.6 Reducing Memory by Utilizing Additional

Data Constructor

The proposed representation of a BB-ω tree provides room for improvements

in terms of memory efficiency – if the tree contains n nodes, there are n + 1

Nil constructors in the whole tree, because every Node constructors contains

two subtrees. We can improve the situation by introducing an additional data

constructor representing a tree of size one:

data BBTree a = Nil -- empty tree

| One a -- tree of size one

| Node -- tree node

(BBTree a) -- left subtree

Int -- size of this tree

a -- element stored in the node

(BBTree a) -- right subtree

Leaves are represented efficiently with this data-type. However, the trees of

size 2 still require one Nil constructor.

To determine the benefit of the new data constructor we need to bound the

number of Nil constructors in the tree. A Nil constructor appears in a tree of size

2 and if there are t trees of size 2, there need to be at least (t−1) internal Nodes for

these t trees to be reachable from the root. Therefore, there can be at most n/3

Nil constructors in the tree. This implies that the number of One constructors

is between n/3 and n/2. Experimental measurements presented in Table 7.5

show that a tree created by repeatedly inserting ascending elements contains n/2

One and no Nil constructors, and a tree created by inserting uniformly random

elements contains approximately 0.43n One and 0.14n Nil constructors.

TOne2.5 TOne3.0 TOne4.0

any number of consecutive elements 50.0% 50.0% 50.0%

random 10 elements 45.5% 45.5% 45.5%

random 102 elements 43.6% 43.6% 43.6%

random 103 elements 43.0% 43.0% 42.8%

random 104 elements 43.0% 43.0% 43.0%

random 105 elements 42.8% 42.8% 42.9%

random 106 elements 42.9% 42.9% 42.9%

Table 7.5: The percentage of One constructors in a BB-ω tree

Considering the memory representation used by the GHC compiler, the Node

constructor occupies 5 words and One constructor occupies 2 words, so the new

110 CHAPTER 7. BB-ω TREES

representation needs 20-30% less memory, depending on the number of One con-

structors. The time complexity of the new representation is also better as shown

in Figure 7.6. Especially note the speedup of the fold operation, which is caused

by reduced number of Nil constructors in the tree. The only disadvantage is the

increase of the code size – but this affects the library author only.

We could also add a fourth data constructor to represent a tree of size 2.

That would result in no Nil constructors in a nonempty tree. The disadvantage

is further code size increase (4 · 4 = 16 cases in the join operation) and also

a noticeable time penalty – on 32bit machines the GHC uses pointer tagging to

distinguish data constructors without the pointer dereference, which is described

in detail in [MYPJ07]. This technique works with types with at most three data

constructors (and up to 7 different constructors on 64bit machines), so it is not

advantageous on 32bit architectures to add a fourth data constructor.

7.6.1 The Order of Data Constructors

When implementing the data-type with the One constructor, we found out that

the order of data constructors in the definition of the data-type notably affects

the performance. On Table 7.6, the time improvements in the benchmark from

the previous section are displayed, when we reordered the constructors to the

following order: Node first, then One and Nil last.

TOne2.5 TOne3.0 TOne4.0

insert_asc 5.1% 6.8% 6.6%

insert_rnd 4.5% 5.2% 5.0%

lookup_asc 7.4% 6.1% 6.2%

lookup_rnd 6.1% 5.4% 5.4%

delete_asc 5.3% 8.4% 8.5%

delete_rnd 4.4% 4.8% 5.0%

fold_asc 8.9% 9.5% 13.1%

fold_rnd 10.1% 10.5% 9.4%

Table 7.6: The improvements of time complexity after reordering the data con-

structors

We believe the reason for the performance improvement is the following: When

matching data constructors, a conditional forward jump is made if the constructor

is not the first one from the data-type definition. Then another conditional

forward jump is made if the constructor is not the second one from the data-type

definition. In other words, it takes i − 1 conditional forward jumps to match

7.6. REDUCING MEMORY BY UTILIZING ADDITIONAL DATA CONSTRUCTOR 111

the i-th constructor from the data-type definition, and these forward jumps are

usually mispredicted (forward jumps are expected not to be taken). It is therefore

most efficient to list the data constructor in decreasing order of their frequency.

7.7 Chapter Notes

This chapter contains original work and is based on the author’s paper [Str12].

Several applications to the Haskell containers package [PkgCont] originate

from this chapter:

• In accordance with the analysis of valid parameters, the implementation of

the Data.Map and Data.Set modules was modified to use the parameters

(ω = 3, α = 2, δ = 0).

• The performance of Data.IntMap and Data.IntSet structures was im-

proved by 10-15% by reordering the data constructors according to Sec-

tion 7.6.1.

• The representation of Data.Map and Data.Set is being changed according

to Section 7.6.

7.7.1 Related Work

The original weight balanced trees were described in [NR72], with two parameters

with values 1+
√

2 and
√

2. Because these are not integers, the resulting algorithm

is not very practical. Adams created a variant of balanced trees, the BB-ω trees,

described in [Ada92] and [Ada93]. Unfortunately, the proof is erroneous – the

paper concludes that for α = 2 the valid parameters are ω ≥ 4.646, even though

the valid parameters must fulfil 3 ≤ ω < 4.5.

The error in the proof manifested in the implementations of BB-ω trees (most

notably the Data.Set and Data.Map in the containers package), which was

discovered independently by several people. The recent paper [HY11] deals with

the correctness of the original weight balanced trees (equivalent to setting δ =

ω − 1 in our definition) and proves in the Coq proof assistant that for δ =

ω − 1, the only integral valid parameters are ω = 3 and α = 2. According to

personal communication with the authors, the proof depends on the computer

proof assistant and cannot be proved without it. In comparison, the proof in this

chapter is explicit and covers the both the original weighted trees and also Adams’

trees. On the other hand, we prove validity only for several chosen parameters,

112 CHAPTER 7. BB-ω TREES

which we selected according to experiments with balance of all trees of size up to

one million.

Binary search trees with similar balance condition are introduced in [Rou01].

Instead of size, ⌊log2 size⌋ is used, so for each node, logarithms of sizes of its

children must differ by at most 1. The correctness proof for such trees is simpler

than for BB-ω trees, but the implementation is more complicated because of the

computation of the logarithm.

Chapter 8

The Haskell containers Package

In almost every computer language there are libraries providing various data

structures, an important tool of a programmer. Programmers benefit from well

written libraries, because these libraries

• free the programmer from repeated data structure implementation and al-

low them to focus on the high level development,

• prevent bugs in the data structure implementation,

• can provide high performance.

For many languages, there exist standardized data structure libraries (STL for

C++ [SL94], Java Collections Framework, .NET System.Collections, etc.), which

provide common and effective options in many cases.

Our goal is to evaluate usability and efficiency of various persistent data struc-

tures. To that end we need to choose computer language where the persistent

data structure libraries are not only available, but also widely used. We decided

to use Haskell [PJ+03], a purely functional language with lazy evaluation. It is

one of the most used functional languages and because it is purely functional,

persistent structures are commonly used. In addition, there exists a centralized

repository called HackageDB where nearly all users release their Haskell packages,

which makes it a good source of implementations of persistent data structures.

In Haskell, the containers package [PkgCont] is a de facto standard data

structure library, being the only data structure package coming with GHC and

the Haskell Platform (the standard Haskell development environment). It is used

by almost every third package on the HackageDB (1782 out of 5132, 14th May

2013), which is a public collection of packages released by Haskell community.

The containers package contains the implementations of

• sets of comparable elements,

• maps of key and value pairs with comparable keys,

113

114 CHAPTER 8. THE HASKELL CONTAINERS PACKAGE

• ordered sequences of elements,

• trees and graphs.

All data structures in this package are fully persistent with purely functional

implementation.

In this chapter we present the first comprehensive performance measurements

of the widely-used containers package, including head-to-head comparisons

against half a dozen other popular container libraries (Sections 8.2 and 8.4).

We have been improving the containers package since 2010. Therefore,

we describe improvements and also changes to the GHC compiler that we made

to achieve best performance possible. Our decision to improve the containers

package was motivated not only by the wide accessibility of the package, but

also by our intention to replace the GHC internal data structures with the

containers package. Therefore we wanted to confirm that the performance

offered by the package is the best possible, both for small and big volumes of

data stored in the structure.

Last but not least, we describe a new container data structure that uses hash-

ing to improve performance in the situation where key comparison is expensive,

such as the case of strings. Hash tables are usually thought of as mutable struc-

tures, but our new data structure is fully persistent. Compared to other optimised

containers, performance is improved up to three times for string elements, as we

describe in Section 8.4.

8.1 The containers Package

In this section we describe the data structures available in the containers pack-

age. We tried to cover the basic and most frequent usage, for the eventual per-

formance boost to be worthwhile. Focusing on basic usage is beneficial for the

sake of comparison too, as the basic functionality is offered by nearly all imple-

mentations.

8.1.1 Sets and Maps

A set is any data structure providing operations empty, member, insert, delete

and union, as listed in Figure 8.1. Real implementations certainly offer richer

interface, but for our purposes we are interested only in these methods.

A map from keys to values is a set of pairs (key, value) which are compared

using the key only. To prevent duplication we discuss only sets from now on, but

8.1. THE CONTAINERS PACKAGE 115

data Set e

empty :: Set e

member :: Ord e => e -> Set e -> Bool

insert :: Ord e => e -> Set e -> Set e

delete :: Ord e => e -> Set e -> Set e

union :: Ord e => Set e -> Set e -> Set e

Figure 8.1: A set implementation provided by the containers package

everything applies to maps too.1

The set and map implementations provided by the container package are

based on BB-ω trees described in Chapter 7.

8.1.2 Intsets and Intmaps

A set of Ints, or a map whose key type is Int, is used very frequently, therefore

the containers package offers specialised implementations. By an intset and

intmap2 we denote a specialised implementation of a set of Ints and a map with

Int keys, respectively. These implementations should of course be faster than

a regular set or map, otherwise there would be no point in using it.

We now describe the implementation of intset provided by the containers

package, because we improve the implementation further in the chapter and we

also devise its variant based on hashing in Section 8.4. This structure was first

described in [OG98].

The implementation is based on the so called big-endian Patricia tries. The

integers are stored as bit sequences in a trie [Fre60], the most significant bit

first. Furthermore, the trie is compressed (such a trie is also called a Patricia

trie [Mor68]) by contracting the nodes with exactly one child. Therefore, the

resulting structure consists of leaves representing values and nodes with exactly

two children representing branchings. Each branching is specified by a mask

containing the one bit separating the subtrees, and by a prefix containing bit

values common to both subtrees of the branching. An example can be found in

Figure 8.2.

1In reality it works the other way around – a set is a special case of a map that has no

associated value for a key. We could use Map e (), where () is a unit type with only one

value, instead of Set e. But the unit values would still occupy space, which is why a Set e is

provided.
2When the GHC compiles a source file, it spends 5-15 times more performing intmap opera-

tions than map operations, depending on the code generator used. These results were measured

with the GHC-head on 26th March 2010.

116 CHAPTER 8. THE HASKELL CONTAINERS PACKAGE

0

1

1

0

1

0

0

01 1

1

Prefix: xxxx

Mask: 1000

Value: 0101
Prefix: 10xx

Mask: 0010

Value: 1001
Prefix: 101x

Mask: 0001

Value: 1010 Value: 1011

Figure 8.2: Classic trie (on the left) and compressed trie (on the right) containing

numbers 5 (01012), 9 (10012), 10 (10102) and 11 (10112).

The trie structure has several advantages – there is no need to perform re-

balancing and the given trie structure allows set operations like union to execute

rapidly in many cases. The trie compression makes the structure memory effi-

cient, because there are exactly n− 1 branchings in a compressed trie containing

n values. The downside is the height of the trie – the only limit on the height is

32 (or 64 on 64-bit systems). Nevertheless, when storing n consecutive elements

or n random elements, the height of the trie is logarithmic (in average in the case

of random elements).

8.1.3 Sequences

The containers package also provides an implementation of a sequence of ele-

ments called a Seq with operations listed in Figure 8.3.

data Seq a

data ViewL a = EmptyL | a :< (Seq a)

data ViewR a = EmptyR | (Seq a) :> a

empty :: Seq a

(<|) :: a -> Seq a -> Seq a

(|>) :: Seq a -> a -> Seq a

viewl :: Seq a -> ViewL a

viewr :: Seq a -> ViewR a

index :: Seq a -> Int -> a

update :: Int -> a -> Seq a -> Seq a

Figure 8.3: Interface of a sequence of elements provided by the containers

package

8.2. BENCHMARKS 117

A Seq is similar to a list, but elements can be added (<| and |>) and removed

(viewl and viewr) to the front and also to the back of the sequence in constant

time, allowing to use this structure as a double-ended queue. Elements can be also

indexed and updated in logarithmic time and two sequences can be concatenated

in logarithmic time.

8.1.4 The Rest of the containers Package

The containers package also contains a data type of multi-way trees. Aside

from the definition of this type, only trivial methods are provided (the folds),

therefore, there is no point in benchmarking those.

The last data structure offered by the package is a graph, which is built on

top of the array package and offers some simple graph algorithms. We perform

no graph benchmarks, as the similar fgl package is very different in design. We

only describe some simple performance improvements.

8.2 Benchmarks

Our goal is to benchmark the containers package against other popular Haskell

libraries with similar functionality.

8.2.1 Benchmarking Methodology

Benchmarking a program written in a language performing lazy evaluation is

a tricky business. Luckily there are powerful benchmarking frameworks available.

We used the criterion package [PkgCrit], a commonly used Haskell benchmark-

ing framework.

All benchmarks were performed on a dedicated machine with Intel Xeon pro-

cessor and 4GB RAM, using 32-bit GHC 6.12.2. All Cabal packages were com-

piled using default compiler switches (except for the containers package, where

we adopted the switches of the precompiled GHC version). We tried to bench-

mark all available implementations on the HackageDB. The list of packages used,

together with their versions, can be found in Appendix A.2.

The benchmarking process works by calling a benchmarked method on given

input data and forcing the evaluation of the result. The evaluation forcing can

be done conveniently using a deepseq package. However, because the repre-

sentation of the data structures is usually hidden, we could not provide NFData

instances directly and had to resort to a fold which performs an evaluation of all

118 CHAPTER 8. THE HASKELL CONTAINERS PACKAGE

elements in the structure. The running time of the fold could affect the overall

running time, but it is not the case in our benchmarks – we make sure that the

running time of the fold is asymptotically less than the benchmark itself. We

also compared our method with evaluation to weak head normal form and the

difference for spine strict structures was negligible.

Because the benchmarked method can take only microseconds to execute,

the benchmarking framework repeats the execution of the method until it takes

reasonable time (say, 100ms) and then divides the elapsed time by the number

of iterations.

This process is repeated 100 times to get the whole distribution of the time

needed, and the mean and confidence interval are produced using the bootstrap-

ping technique.

The results are displayed as graphs, one for each benchmark (Figures 8.5

to 8.18). One implementation is chosen as a baseline and the execution times

are normalized with respect to the selected baseline. For each implementation

and each input, the mean time of 100 iterations is displayed, together with 95%

confidence interval (which is usually not visible, because it is nearly identical to

the mean). For every implementation, a geometric mean of all times is displayed

in the legend. The implementations except for the baseline are ordered according

to this mean.

Each benchmark consists of several inputs. The size of input data is always

measured in binary logarithms (e.g., the input of size 10 contains 1024 elements).

This size is always the first part of description of the input, which is displayed on

the x axis. The input elements are of type Int unless stated otherwise (Strings

and ByteStrings will be used with the HashSet in Section 8.4). Where any

order of elements in the input data could be used, we tried ascending and random

order (asc and rnd in the description of the input) to fully test the data structure

behaviour. The random data are uniformly distributed, generated using standard

Haskell random generator with fixed seed, and duplicates are allowed.

All graphs together with the numerical data are available on the author’s

website http://fox.ucw.cz/papers/.

8.2.2 Benchmarking Sets

The Set interface is polymorphic in the element type, which must be an instance

of Ord. Since the only element operation available is a comparison, nearly all

implementations use some kind of a balanced search tree. We will not describe

all the algorithms used, but will provide references for interested readers.

8.2. BENCHMARKS 119

We benchmarked the following set implementations:

• Set and Map from the containers package, which use BB-ω trees described

in Chapter 7,

• FiniteMap from the GHC 6.12.2 sources, which also uses BB-ω trees,

• AVL from AvlTree package, which uses well-known AVL trees [AVL62],

• AVL from TreeStructures package, denoted as AVL2 in the benchmarks,

also using AVL trees,

• RBSet based on red-black trees [GS78], implemented by the author.

We performed these benchmarks:

• lookup benchmark: perform a member operation on every element of the

given set, either in ascending order (asc in the input description) or in

random order of elements (rnd in the input description). For example, the

results for “08/rnd” are for a randomly generated input of size 28.

• insert benchmark: build a set by sequentially calling insert, either in as-

cending (asc in the input description) or in random (rnd in the input

description) order of elements,

• delete benchmark: sequentially delete all elements of a given set, either in

ascending (asc in the input description) or in random (rnd in the input

description) order of elements,

• union benchmark: perform a union of two sets of given sizes (the sizes are

the first and second part of the input description). The input description

asc means the elements in one set are all smaller than the elements in the

other set. The description e_o stands for an input, where one set contains

the even numbers and the other the odd numbers. The last input description

mix represents an input whose n elements are grouped in
√

n continuous

runs of
√

n elements, and there runs are split between the two sets.

• tree union benchmark: given a tree with elements in the leaves, perform

union in all internal vertices to compute the union of all the elements.

The tree union benchmark models a particularly common case in which

a set is generated by walking over a tree – for example, computing the free

variables of a term. In this situation, many union calls operate with very

small sets, which is a very different usage pattern compared to the union

benchmark.

The input description asc and rnd specify the order of the elements in

the leaves. The shape of the tree is specified by the last letter of the input

120 CHAPTER 8. THE HASKELL CONTAINERS PACKAGE

description. The letter b stands for perfectly balanced binary tree, u denotes

unbalanced binary tree (one subtree is six times the size of the other subtree)

and p stands for a centipede, see Figure 8.4.

Figure 8.4: A highly unbalanced tree called the centipede

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

0
4
/a

s
c

0
4
/r

n
d

0
8
/a

s
c

0
8
/r

n
d

1
2
/a

s
c

1
2
/r

n
d

1
6
/a

s
c

1
6
/r

n
d

2
0
/a

s
c

2
0
/r

n
d

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

Set: lookup

Set(100.0%)
RBSet(79.5%)

AVL(84.9%)
Map(107.1%)

FiniteMap(110.9%)
AVL2(128.0%)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

0
4
/a

s
c

0
4
/r

n
d

0
8
/a

s
c

0
8
/r

n
d

1
2
/a

s
c

1
2
/r

n
d

1
6
/a

s
c

1
6
/r

n
d

2
0
/a

s
c

2
0
/r

n
d

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

Set: insert

Set(100.0%)
AVL(48.2%)

RBSet(61.9%)
FiniteMap(102.5%)

Map(115.8%)
AVL2(135.8%)

Figure 8.5: Benchmark of sets operations I

8.2. BENCHMARKS 121

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

0
4

/a
s
c

0
4

/r
n

d

0
8

/a
s
c

0
8

/r
n

d

1
2

/a
s
c

1
2

/r
n

d

1
6

/a
s
c

1
6

/r
n

d

2
0

/a
s
c

2
0

/r
n

d

n
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t
im

e

Set: delete

Set(100.0%)
FiniteMap(92.7%)

AVL(101.6%)
Map(102.5%)

AVL2(139.8%)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0
5
/1

0
/a

s
c

0
5
/1

0
/e

_
o

0
5
/1

0
/m

ix

1
0
/1

0
/a

s
c

1
0
/1

0
/e

_
o

1
0
/1

0
/m

ix

1
0
/2

0
/a

s
c

1
0
/2

0
/e

_
o

1
0
/2

0
/m

ix

2
0
/2

0
/a

s
c

2
0
/2

0
/e

_
o

2
0
/2

0
/m

ix

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

2.5 7.2 6.0

Set: union

Set(100.0%)
AVL(40.4%)

FiniteMap(102.7%)
Map(105.4%)

RBSet(116.0%)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0
8
/a

s
c
_
b

0
8
/a

s
c
_
p

0
8
/a

s
c
_
u

0
8
/r

n
d
_
b

0
8
/r

n
d
_
p

0
8
/r

n
d
_
u

1
4
/a

s
c
_
b

1
4
/a

s
c
_
p

1
4
/a

s
c
_
u

1
4
/r

n
d
_
b

1
4
/r

n
d
_
p

1
4
/r

n
d
_
u

2
0
/a

s
c
_
b

2
0
/a

s
c
_
p

2
0
/a

s
c
_
u

2
0
/r

n
d
_
b

2
0
/r

n
d
_
p

2
0
/r

n
d
_
u

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o

n
 t

im
e

2.5 2.2 6.3 6.6

Set: treeunion

Set(100.0%)
AVL(56.0%)

RBSet(83.0%)
FiniteMap(98.4%)

Map(110.5%)

Figure 8.6: Benchmark of sets operations II

122 CHAPTER 8. THE HASKELL CONTAINERS PACKAGE

The results of the benchmarks are presented in Figures 8.5 and 8.6. The per-

formance of the Set is comparable to the FiniteMap, but it is significantly worse

than AVL and RBSet. The improvements to the Set implementation bringing it

on par with AVL and RBSet are described in Section 8.3.

8.2.3 Benchmarking Intsets

The purpose of an intset implementations is to outperform a set of Ints. This

can be achieved by performing additional operations with Ints in addition to

a comparison. All mentioned implementations exploit the fact that an Int is

a sequence of 32 or 64 bits.

We have benchmarked following intset implementations:

• IntSet from the containers package which implements big-endian Patri-

cia trees described in Section 8.1.2,

• UniqueFM from GHC 6.12.2 sources which also implements big-endian Pa-

tricia trees,

• PatriciaLoMap from EdisonCore package, called EdisonMap in the bench-

mark, which implements little-endian Patricia trees [OG98].

We also include ordinary Set Int from the containers package in the bench-

marks. For comparison, we also manually specialised the Set implementation

by replacing overloaded comparisons with direct calls to Int comparisons, a pro-

cess that could be mechanised.3 By comparing to this implementation, called

SetInlined, we can see the effect of the algorithmic improvements (rather than

mere specialisation) of other intset implementations.

The benchmarks performed are the same as in the case of generic set imple-

mentations. The results can be found in Figures 8.7 and 8.8.

The IntSet outperforms all the presented implementations, except for the

lookup and delete benchmark, where the UniqueFM is slightly faster. The IntSet

is considerably faster than a Set Int, especially in the tree union benchmark,

where it runs more than four times faster.

Although the performance of IntSet is quite good, we describe several im-

provements in Section 8.3.

3After discussions with GHC developers, this process is now automatically performed in

the so called specialise pass, provided that the unfolding of a function is known. That can be

assured by using the INLINABLE pragma added for this purpose in GHC 7.0.1.

8.2. BENCHMARKS 123

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

0
4

/a
s
c

0
4

/r
n

d

0
8

/a
s
c

0
8

/r
n

d

1
2

/a
s
c

1
2

/r
n

d

1
6

/a
s
c

1
6

/r
n

d

2
0

/a
s
c

2
0

/r
n

d

n
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t
im

e
2.4 5.8

Intset: lookup

IntSet(100.0%)
UniqueFM(94.7%)

IntMap(97.9%)
SetInlined(111.8%)

EdisonMap(140.8%)
Set(144.8%)

 0

 1

 2

 3

 4

 5

 6

0
4
/a

s
c

0
4
/r

n
d

0
8
/a

s
c

0
8
/r

n
d

1
2
/a

s
c

1
2
/r

n
d

1
6
/a

s
c

1
6
/r

n
d

2
0
/a

s
c

2
0
/r

n
d

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

10.8

Intset: insert

IntSet(100.0%)
IntMap(100.5%)

UniqueFM(112.9%)
EdisonMap(204.3%)

SetInlined(206.6%)
Set(326.7%)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0
4
/a

s
c

0
4
/r

n
d

0
8
/a

s
c

0
8
/r

n
d

1
2
/a

s
c

1
2
/r

n
d

1
6
/a

s
c

1
6
/r

n
d

2
0
/a

s
c

2
0
/r

n
d

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n

 t
im

e

7.0 16.7

Intset: delete

IntSet(100.0%)
UniqueFM(91.9%)

IntMap(98.5%)
SetInlined(162.9%)

EdisonMap(208.3%)
Set(270.6%)

Figure 8.7: Benchmark of intsets operations I

124 CHAPTER 8. THE HASKELL CONTAINERS PACKAGE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

0
5
/1

0
/a

s
c

0
5
/1

0
/e

_
o

0
5
/1

0
/m

ix

1
0
/1

0
/a

s
c

1
0
/1

0
/e

_
o

1
0
/1

0
/m

ix

1
0
/2

0
/a

s
c

1
0
/2

0
/e

_
o

1
0
/2

0
/m

ix

2
0
/2

0
/a

s
c

2
0
/2

0
/e

_
o

2
0
/2

0
/m

ix

n
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t
im

e

6.7

Intset: union

IntSet(100.0%)
UniqueFM(103.8%)

IntMap(107.4%)
EdisonMap(111.1%)

SetInlined(152.8%)
Set(166.6%)

 0

 2

 4

 6

 8

 10

 12

0
8
/a

s
c
_
b

0
8
/a

s
c
_
p

0
8
/a

s
c
_
u

0
8
/r

n
d
_
b

0
8
/r

n
d
_
p

0
8
/r

n
d
_
u

1
4
/a

s
c
_
b

1
4
/a

s
c
_
p

1
4
/a

s
c
_
u

1
4
/r

n
d
_
b

1
4
/r

n
d
_
p

1
4
/r

n
d
_
u

2
0
/a

s
c
_
b

2
0
/a

s
c
_
p

2
0
/a

s
c
_
u

2
0
/r

n
d
_
b

2
0
/r

n
d
_
p

2
0
/r

n
d
_
u

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

19.3 12.7

Intset: treeunion

IntSet(100.0%)
IntMap(103.3%)

UniqueFM(142.0%)
EdisonMap(253.9%)

SetInlined(370.1%)
Set(465.9%)

Figure 8.8: Benchmark of intsets operations II

8.2. BENCHMARKS 125

8.2.4 Benchmarking Sequences

The Seq type in containers supports beside others both (a) deque functionality

(add and remove elements at beginning and end), and (b) persistent-array func-

tionality (indexing and update). We compare the Seq to several other libraries,

most of which support only (a) or (b) but not both, and which are therefore

expected to outperform the Seq.

Queue Functionality

The queue functionality performance is significant, because there are no other

implementations of queues and deques in standard Haskell libraries and so the Seq

is the “only” choice when a queue is needed.

The queue benchmark consists of two phases: first a certain number of el-

ements is added to the queue (the number of the elements added is the first

part of the input description) and then some of the previously added elements

are removed from the queue (the second part of the input description). We also

tried mixing the insertions and removals, but the differences in performance were

negligible, therefore, we do not present these experiments.

In the queue benchmark we tested the following implementations:

• Seq from the containers package, which implements 2-3 finger trees an-

notated with sizes [HP06],

• Trivial, which is a non-persistent queue with amortized bounds, described

in Section 5.2 of [Oka99],

• Amortized, which is a persistent queue with amortized bounds, described

in Section 6.3.2 of [Oka99],

• Realtime, which is a persistent queue with worst-case bounds, described

in Section 7.2 of [Oka99],

• Ed_Simple, Ed_Amortized and Ed_Seq from the EdisonCore package,

which implement the same algorithms as Trivial, Amortized and Seq,

respectively.

The results are displayed in Figure 8.9. The Ed_Seq is missing, because it

was roughly 20 times slower than the Seq implementation. Because the Trivial

queue implementation is not persistent, we do not consider it to be a practical

alternative. That means the Seq implementation is only 50% slower than the

fastest queue implementation available. That is quite a good result, considering

the additional functionality it provides.

126 CHAPTER 8. THE HASKELL CONTAINERS PACKAGE

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

0
8

_
0

1

0
8

_
0

4

0
8

_
0

8

1
2

_
0

1

1
2

_
0

6

1
2

_
1

2

1
6

_
0

1

1
6

_
0

8

1
6

_
1

6

2
0

_
0

1

2
0

_
1

0

2
0

_
2

0

n
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t
im

e

Seq: queue

Seq(100.0%)
Ed_Simple(38.1%)

Trivial(43.3%)
Amortized(61.4%)

Ed_Amortized(62.4%)
Realtime(72.4%)

Figure 8.9: Benchmark of queue operations

Persistent Array Functionality

The index and update benchmark perform a sequence of index and update opera-

tions, respectively, one for each element in the structure (the size of this structure

is in the input description). The benchmark is nearly identical to the persistent

array benchmark of Section 6.2.

We benchmarked the following implementations:

• Seq from the containers package, which implements 2-3 finger trees an-

notated with sizes [HP06],

• Array from the array package, a monolithic array [Wad87] providing con-

stant time indexing,

• RandList from the random-access-list package, which implements the

skew binary random-access list from Section 9.3 of [Oka99],

• Ed_RandList from the EdisonCore package, which implements the same

algorithm,

• Ed_BinRandList from the EdisonCore package, which implements boot-

strapped binary random-access list from Section 10.1.2 of [Oka99],

• Ed_Seq from the EdisonCore package,

• IntMap from the containers package.

The results are presented in Figure 8.10. Again, we do not display Ed_Seq,

because it was 10-20 times slower than Seq. The IntMap was used as a map

8.2. BENCHMARKS 127

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

0
8

1
2

1
6

1
8

2
0

n
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t
im

e

Seq: index

Seq(100.0%)
Array(8.1%)

IntMap(65.8%)

Ed_RandList(101.6%)
Ed_BinRandList(379.8%)

RandList(380.5%)

 0

 1

 2

 3

 4

 5

 6

 7

 8

0
8

1
0

1
2

1
4

1
6

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

Seq: update

Seq(100.0%)
IntMap(49.2%)

Ed_RandList(134.0%)

Ed_BinRandList(289.0%)
RandList(303.2%)

Figure 8.10: Benchmark of sequence operations

from the Int indexes to the desired values. Despite the surplus indexes, it out-

performed most of the other implementations. The Array is present only in the

lookup benchmark, because the whole array has to be copied when modified and

thus the update operation modifying only one element is very ineffective.

Summary

The Seq type is neither fastest queue nor the fastest persistent array, but it excels

when both these qualities are required.4 For comparison, when an IntMap is used

in the queue benchmark, it is 2.5 times slower than Seq, and Ed_RandList and

Ed_BinRandList are 5 times and 7 times slower, respectively.

4In addition, a Seq can also be split and concatenated in logarithmic time.

128 CHAPTER 8. THE HASKELL CONTAINERS PACKAGE

8.3 Improving the containers Performance

We have been improving the performance of the containers package since 2010

and the author has been the maintainer of this package since 2011. In this section

we summarize our most important improvements. Many of them are general

techniques that can be used to improve other data structure implementations.

There are several methods of improving the existing code. The “simplest”

method is to improve the (asymptotic) complexity of the algorithm. We say

simplest, because such improvements can be done by examining the source code

only without requiring benchmarks or binaries, although the necessary theoretical

background can be quite complicated.

As an example, consider the following definitions from the Data.Tree module:

data Tree a = Node a (Forest a)

type Forest a = [Tree a]

In the Data.Graph module,5 function for pre-order and post-order Tree traversal

are provided. The reader is encouraged to find out what is wrong with both of

these implementations:

preorder :: Tree a -> [a]

preorder (Node a ts) = a : preorderF ts

preorderF :: Forest a -> [a]

preorderF ts = concat (map preorder ts)

postorder :: Tree a -> [a]

postorder (Node a ts) = postorderF ts ++ [a]

postorderF :: Forest a -> [a]

postorderF ts = concat (map postorder ts)

The postorder case is straightforward – the list concatenation is linear in the

length of the first list, so the time complexity of postorder performed on a path

is quadratic.

The preorder is a bit more challenging – concat has complexity linear in

the lengths of all but the last list given. This also results in quadratic behaviour,

for example when the preorder is executed on a centipede (Figure 8.4). This

mistake is also present in the postorder function.

It is trivial to reimplement both these functions to have linear time complexity.

However, performance improvements do not originate from algorithmic im-

provements only. More frequently, the same algorithm can be reimplemented to

run faster. Profiling is usually used to find out which parts of the implementation

5Up to version 0.4; the functions were corrected in the latter versions.

8.3. IMPROVING THE CONTAINERS PERFORMANCE 129

take long to execute and would be beneficial to improve.

Having two implementations, we can also examine why one is faster. In the

simplest case we can do so at the level of Haskell sources. But if the reason

for different performance is not apparent, we can inspect the differences at the

level of Core Haskell [Tol01] using for example the -ddump-stranal GHC flag,

which shows the results of strictness analysis. If this is not enough, we can

examine the C-- code [PJRR99] using the -ddump-cmm GHC flag. We had to

resort to analysis on all these levels when improving the performance of the

containers.

We briefly describe our most important changes to the containers package.

All of these changes have already been incorporated into the package and their

correctness has been verified using the test suite of the containers package. We

also present the benchmark results of the new implementations.

8.3.1 Improving Set and Map

According to the benchmarks, we decided to continue using BB-ω tree represen-

tation and focus only on its improvements. All of the described improvements

apply to both to Set and Map.

• As already mentioned, a Set can contain keys of any comparable type

(i.e., any instance of Ord). This behaviour is achieved by parametrising

all Set methods performing comparisons with a comparison function. This

overhead can be substantial, most notably when a Set method spends a lot

of time comparing the elements, like member or insert.

One solution to this problem is to mark all such methods INLINE. That

allows such methods to be inlined to every call site and if the call is not

polymorphic, to specialise the method bodies to use a specific comparison

method instead of a generic one. The downside of this solution is code

growth – we have to repeat the method body in every call site. Nevertheless,

this solution is used for GHC before version 7.0. The code grown issue

can be alleviated by making sure only the tree navigation is inlined, not

rebalancing and other tasks not requiring element comparison.

Since GHC 7.0, GHC developers together with us came up with a better

alternative that allows sharing of the specialised method bodies. A new

specialisation pass was added to the optimizer. If a polymorphic method is

called with a known type (a particular class instance, to be exact) and if

its unfolding is known, it is specialised in this type and placed to the call

130 CHAPTER 8. THE HASKELL CONTAINERS PACKAGE

site module. The specialisation is remembered and reused in this module

or in any module depending on this one. To ensure that an unfolding of

a method is available, new pragma INLINABLE was provided. This solution

is currently used in containers when compiled with GHC 7.0 or later.

However, we always inline some higher-order methods, notably the folds.

They have very small bodies and spend most of the time calling the us-

er supplied function, therefore, inlining improves performance considerably

and the code growth is minimal.

• Rebalancing was originally performed by a following balance method:

balance :: Set a -> a -> Set a -> Set a

balance left key right

| size left + size right <= 1 = node left key right

| size right > omega * size left =

if size (left_of right) < alpha * size (right_of right)

then singleL left key right

else doubleL left key right

| size left > omega * size right = rotateR left key right

if size (right_of left) < alpha * size (left_of left)

then singleR left key right

else doubleR left key right

| otherwise = node left key right

If the balance condition is broken, a method performing one of the four rota-

tions is called, rebuilding the affected nodes using smart constructors. This

results in a repeated pattern matching, which is unnecessary. We rewrote

the balance function to contain all the logic and to pattern match every

node at most once. That resulted in a significant performance improvement

in all Set methods modifying a given set.

• When a recursive method accesses its parameter at different recursion levels,

Haskell usually has to check that it is evaluated each time it is accessed. For

a member or insert this effect causes measurable slowdown. We rewrote

such methods so that they evaluate their parameters at most once. For il-

lustration, we changed the original implementation of the member method:

member :: Ord a => a -> Set a -> Bool

member x Tip = False

member x (Bin _ y l r) = case compare x y of

LT -> member x l

GT -> member x r

EQ -> True

8.3. IMPROVING THE CONTAINERS PERFORMANCE 131

to the following one.

member _ Tip = False

member x t = x ‘seq‘ member’ t where

member’ Tip = False

member’ (Bin _ y l r) =

case compare x y of LT -> member’ l

GT -> member’ r

EQ -> True

Nevertheless, it is important to check that no heap memory is allocated for

the member’ closure. That would happen if weak head normal form of the

result contained a suspended call to member’. In that case, allocating the

additional closure would probably be more expensive.

Still, creating the member’ closure is quite fragile and can cause increased

heap allocation under specific circumstances. Consider for example the case

when member is inlined and member’ is not. Then the evaluated x must

be somehow passed to member’. But if x is present only in a register, it

needs to be heap-allocated before passed to member’. According to our

measurements of the GHC performance, this happens rarely and the re-

sulting increased heap allocation is negligible. However, a more predictable

optimization should be devised in the long term.

• We improved the set operations, e.g., union, to handle more small cases.

Originally, the recursion stopped when one tree was empty. We now also

handle the case when one of the trees is a singleton. There are many pos-

sible small cases which could be handled, so we chose the best ones using

a benchmark.6

• In all set operations, a comparison with a possibly infinite element must be

performed. That was originally done by supplying a comparison function,

which was constant for the infinite bound. Supplying a value Maybe elem

with infinity represented as Nothing instead of a comparison function im-

proved the performance.7 To demonstrate the source code changes, consider

the filterGt method, which creates a new set from the given set consist-

ing of the elements greater than the given bound, which can be negative

infinity.

6Only the small cases of size one were helpful, special cases for sets of 2 and 3 elements did

not further improve the performance. Also, the small cases did not help in all set operations.
7We in fact use strict version of the datatype: data MaybeS a = NothingS |Just !a.

132 CHAPTER 8. THE HASKELL CONTAINERS PACKAGE

filterGt :: (a -> Ordering) -> Set a -> Set a

filterGt _ Tip = Tip

filterGt cmp (Bin _ x l r) = case cmp x of

LT -> join x (filterGt cmp l) r

GT -> filterGt cmp r

EQ -> r

We altered the implementation as follows.

filterGt Nothing t = t

filterGt (Just b) t = b ‘seq‘ filter’ t where

filter’ Tip = Tip

filter’ (Bin _ x l r) = case compare b x of

LT -> join x (filter’ l) r

GT -> filter’ r

EQ -> r

• The fromList method creates a set of a list of elements. If the elements are

already ordered, asymptotically more efficient fromAscList method can be

used. Nevertheless, the library users must explicitly use the latter method,

which is inconvenient – they have to know they have to use it and some-

times they even cannot, if the code in question is present in a code of some

other programmer.

Instead, we modified fromList to dynamically choose how to build the

set. We start by assuming the input list is ordered and build the set using

a faster algorithm. If we detect an unordered element, we keep the already

constructed set and add the rest of the input list using a slower algorithm.

This dynamic behaviour is much better for the library users, although it is

quite complicated to create a implementation which is not slower than any

of the original method.

• According to the experiments with reordering data constructors in Sec-

tion 7.6.1 we reordered the constructors of Set from

data Set a = Tip | Bin !Size !a !(Set a) !(Set a)

to the following.

data Set a = Bin !Size !a !(Set a) !(Set a) | Tip

However, the performance difference of reordering only two data construc-

tors is minor.

The results are displayed in Figures 8.11 and 8.12. The improved implemen-

tations are called NewSet and NewMap and outperform all other implementations.

8.3. IMPROVING THE CONTAINERS PERFORMANCE 133

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

0
4

/a
s
c

0
4

/r
n

d

0
8

/a
s
c

0
8

/r
n

d

1
2

/a
s
c

1
2

/r
n

d

1
6

/a
s
c

1
6

/r
n

d

2
0

/a
s
c

2
0

/r
n

d

n
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t
im

e

Set: lookup

Set(100.0%)
NewMap(46.7%)

NewSet(47.6%)
RBSet(52.1%)

AVL(58.7%)
Map(104.2%)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

0
4
/a

s
c

0
4
/r

n
d

0
8
/a

s
c

0
8
/r

n
d

1
2
/a

s
c

1
2
/r

n
d

1
6
/a

s
c

1
6
/r

n
d

2
0
/a

s
c

2
0
/r

n
d

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

1.3 1.3 1.3 1.3

Set: insert

Set(100.0%)
NewSet(64.1%)

NewMap(69.5%)
RBSet(80.2%)

AVL(88.2%)
Map(120.7%)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

0
4
/a

s
c

0
4
/r

n
d

0
8
/a

s
c

0
8
/r

n
d

1
2
/a

s
c

1
2
/r

n
d

1
6
/a

s
c

1
6
/r

n
d

2
0
/a

s
c

2
0
/r

n
d

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n

 t
im

e

1.3

Set: delete

Set(100.0%)
NewSet(66.0%)

NewMap(72.4%)
AVL(99.1%)

Map(105.9%)

Figure 8.11: Benchmark of improved sets operations I

134 CHAPTER 8. THE HASKELL CONTAINERS PACKAGE

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

0
5
/1

0
/a

s
c

0
5
/1

0
/e

_
o

0
5
/1

0
/m

ix

1
0
/1

0
/a

s
c

1
0
/1

0
/e

_
o

1
0
/1

0
/m

ix

1
0
/2

0
/a

s
c

1
0
/2

0
/e

_
o

1
0
/2

0
/m

ix

2
0
/2

0
/a

s
c

2
0
/2

0
/e

_
o

2
0
/2

0
/m

ix

n
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t
im

e

1.4 5.5 1.2 4.7

Set: union

Set(100.0%)
NewSet(31.6%)

NewMap(33.2%)
AVL(33.5%)

RBSet(93.8%)
Map(104.1%)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0
8
/a

s
c
_
b

0
8
/a

s
c
_
p

0
8
/a

s
c
_
u

0
8
/r

n
d
_
b

0
8
/r

n
d
_
p

0
8
/r

n
d
_
u

1
4
/a

s
c
_
b

1
4
/a

s
c
_
p

1
4
/a

s
c
_
u

1
4
/r

n
d
_
b

1
4
/r

n
d
_
p

1
4
/r

n
d
_
u

2
0
/a

s
c
_
b

2
0
/a

s
c
_
p

2
0
/a

s
c
_
u

2
0
/r

n
d
_
b

2
0
/r

n
d
_
p

2
0
/r

n
d
_
u

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

1.5 2.5 2.3 6.6 5.2 7.2 1.9

Set: treeunion

Set(100.0%)
NewSet(59.6%)

NewMap(63.9%)
AVL(70.6%)

RBSet(113.1%)
Map(113.7%)

Figure 8.12: Benchmark of improved sets operations II

8.3. IMPROVING THE CONTAINERS PERFORMANCE 135

8.3.2 Improving IntSet and IntMap

The IntSet implementation was already performing quite well and was more

difficult to improve then the Set. The following improvements apply to both

IntSet and IntMap, only the last one applies to IntSet only.

• As with Set, some recursive functions repeatedly checked whether the pa-

rameters are already evaluated. We made sure this check is done at most

once. Because some functions were already strict in the key, it was enough

to add the seq calls to appropriate places. This improved the lookup com-

plexity significantly.

• Contrary to Set, functions of IntSet are not polymorphic and need no spe-

cialization. Therefore, we only inline small higher-order functions, notably

the folds, as previously.

• According to the experiments with reordering the data constructors in Sec-

tion 7.6.1 we reordered the constructors of an IntSet from

data IntSet = Nil | Tip !Int | Bin !Prefix !Mask !IntSet !IntSet

to the following

data IntSet = Bin !Prefix !Mask !IntSet !IntSet | Tip !Int | Nil

The constructors are now introduced from the most frequent one to the

least frequent one. This change resulted in approximately 10% performance

improvement of all methods.

• We were able to improve the set operations, e.g., union, by reordering the

pattern matches in the method definition. Consider the original definition:

union :: IntSet -> IntSet -> IntSet

union (Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2) = ...

union (Tip x) t = insert x t

union t (Tip x) = insertR x t --right biased insert

union Nil t = t

union t Nil = t

Because the patterns are matched from top to bottom, this order of the

patterns is not efficient. Consider union Nil (Tip _). According to the

above definition, it must be handled by the third case, not the fourth one. So

a union Nil must perform a needless pattern match on its second argument

to see whether it is a Tip or not.

136 CHAPTER 8. THE HASKELL CONTAINERS PACKAGE

A better ordering is the following:

union (Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2) = ...

union t@(Bin _ _ _ _) (Tip x) = insertR x t --right biased insert

union t@(Bin _ _ _ _) Nil = t

union (Tip x) t = insert x t

union Nil t = t

This way the first argument is examined and only if it is Bin, also the

second argument is examined.8

• In contrast to Set and Map, which have nearly the same representation,

we changed the representation of the IntSet. The idea was suggested by

Joachim Breitner, who also created the initial implementation.

The new representation of IntSet is dense. Assume Int has 32 bits, other

sizes are analogous. If we want to represent a set of numbers in range 0..31,

we can do it using an Int, where i-th bit is zero or one according to whether

the number i is in the set. We can therefore modify the IntSet to store

only the first 32 − 5 = 27 bits in the big-endian Patricia trie (a so called

prefix) and for each prefix remember a bitmap of elements of the set with

this prefix. The resulting representation is therefore:

data IntSet = Bin !Prefix !Mask !IntSet !IntSet

| Tip !Prefix !BitMap

| Nil

This representation is most useful when the set is dense and the bitmaps

contain many ones. But even if the set is not dense and every bitmap

contain exactly one bit set, the memory overhead is only 14% considering

GHC memory representation.

It is important that the dense representation does not cause (nearly) any

overhead in the case the represented set is sparse. That was the case with

nearly all methods. The only problematic operation was enumeration of set

elements stored in a bitmap, which is needed during a fold.9 This enumer-

ation must be fast and linear in the number of values stored in the bitmap.

We were able to implement the enumeration efficiently using the De Bruijn

sequences [dB46]. Firstly, we find the lowest bit set in the bitmap bm using

the following sequence of operations:

8The general method describing optimal order of pattern matches can be found in Chapter 5

of [PJ87].
9And also during filter and partition methods.

8.4. NEW HASHING-BASED CONTAINER 137

bm 101010...10100...0

negate bm 010101...01100...0

x = bm .&. negate bm 000000...00100...0

Secondly, we find the index of the only bit set in x, let it be i. We use the

fact that multiplying by x is exactly the same as bit shifting to the left by

i. Therefore, if we look at the highest 5 bits of x · c, it is a unique quin-

tuple of bits from c for every i. Now the De Bruijn sequences come to the

rescue – if every quintuple of bits in c is unique, we can decode i from such

a quintuple, using a simple table lookup. The resulting implementation for

32-bit arithmetics is:

lowestBitIndex :: Word -> Int

lowestBitIndex bm = table!(((bm.&.negate bm) * 0x077CB531) ‘shiftR‘ 27)

where table = listArray (0,31) [0,1,28,2,29,14,24,3,30,22,20,

15,25,17,4,8,31,27,13,23,21,

19,16,7,26,12,18,6,11,5,10,9]

Using this method (and analogous one for 64-bit arithmetics), we can enu-

merate bits in an Int bitmap efficiently enough.

The benchmark results of the improved implementations (called NewIntSet

and NewIntMap) are presented in Figures 8.13 and 8.14. The NewIntSet imple-

mentation is much faster on all sequential (i.e., dense) sets thanks to the dense

representation. On random inputs there seem to be none or minimal overhead.

The improvement of NewIntMap is smaller, but still significant.

8.4 New Hashing-Based Container

When a comparison of two elements is expensive, using a tree based set repre-

sentation can be slow, because at least log2 N comparisons must be performed

to locate an element in the set. In this section we investigate whether we can do

better by developing a new implementation for set optimised for the expensive-

comparison case.

Two approaches suggest themselves. First, one could use a hash table (Section

6.4 of [Knu98]) to guess the position of an element in the set and performs only

one comparison if the guess was correct. Another alternative is a trie (Section 6.3

of [Knu98]), which can also be implemented using a ternary search tree [BS98],

which compares only parts of the keys in case the keys are sequences of elements

(this is what IntSet and IntMap does).

138 CHAPTER 8. THE HASKELL CONTAINERS PACKAGE

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

0
4
/a

s
c

0
4
/r

n
d

0
8
/a

s
c

0
8
/r

n
d

1
2
/a

s
c

1
2
/r

n
d

1
6
/a

s
c

1
6
/r

n
d

2
0
/a

s
c

2
0
/r

n
d

n
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t
im

e

Intset: lookup

IntSet(100.0%)
NewIntSet(58.8%)

NewIntMap(82.5%)
UniqueFM(90.5%)

IntMap(97.8%)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0
4
/a

s
c

0
4
/r

n
d

0
8
/a

s
c

0
8
/r

n
d

1
2
/a

s
c

1
2
/r

n
d

1
6
/a

s
c

1
6
/r

n
d

2
0
/a

s
c

2
0
/r

n
d

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

1.6

Intset: insert

IntSet(100.0%)
NewIntSet(52.2%)

NewIntMap(86.8%)
IntMap(102.4%)

UniqueFM(121.9%)

Figure 8.13: Benchmark of improved intsets operations I

8.4. NEW HASHING-BASED CONTAINER 139

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

0
4

/a
s
c

0
4

/r
n

d

0
8

/a
s
c

0
8

/r
n

d

1
2

/a
s
c

1
2

/r
n

d

1
6

/a
s
c

1
6

/r
n

d

2
0

/a
s
c

2
0

/r
n

d

n
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t
im

e

Intset: delete

IntSet(100.0%)
NewIntSet(68.7%)

UniqueFM(92.2%)
NewIntMap(94.9%)

IntMap(99.8%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0
5
/1

0
/a

s
c

0
5
/1

0
/e

_
o

0
5
/1

0
/m

ix

1
0
/1

0
/a

s
c

1
0
/1

0
/e

_
o

1
0
/1

0
/m

ix

1
0
/2

0
/a

s
c

1
0
/2

0
/e

_
o

1
0
/2

0
/m

ix

2
0
/2

0
/a

s
c

2
0
/2

0
/e

_
o

2
0
/2

0
/m

ix

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

Intset: union

IntSet(100.0%)
NewIntSet(10.7%)

NewIntMap(42.5%)
UniqueFM(96.6%)

IntMap(99.9%)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0
8
/a

s
c
_
b

0
8
/a

s
c
_
p

0
8
/a

s
c
_
u

0
8
/r

n
d
_
b

0
8
/r

n
d
_
p

0
8
/r

n
d
_
u

1
4
/a

s
c
_
b

1
4
/a

s
c
_
p

1
4
/a

s
c
_
u

1
4
/r

n
d
_
b

1
4
/r

n
d
_
p

1
4
/r

n
d
_
u

2
0
/a

s
c
_
b

2
0
/a

s
c
_
p

2
0
/a

s
c
_
u

2
0
/r

n
d
_
b

2
0
/r

n
d
_
p

2
0
/r

n
d
_
u

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o

n
 t

im
e

1.6 1.2 1.6 2.4 1.6 2.2 1.6 1.4 1.8 1.7 1.4 1.4 1.4 1.3

Intset: treeunion

IntSet(100.0%)
NewIntSet(54.5%)

NewIntMap(87.4%)
IntMap(104.4%)

UniqueFM(147.3%)

Figure 8.14: Benchmark of improved intsets operations II

140 CHAPTER 8. THE HASKELL CONTAINERS PACKAGE

In order to implement a hash table, we need an underlying persistent array

implementation. Also, we need to take care of rehashing the structure to adjust

the size of the persistent array to the size of the hash table. However, the rehash-

ing is not trivial and would probably have to be performed gradually using some

kind of global rebuilding [Ove83a].

There is a way to avoid the rehashing. If we had a persistent array imple-

mentation that was sparse, i.e., able to store only a subset of elements effectively,

we could perform no rehashing at all – we could use a full (32-bit or 64-bit)

hash without computing the element index modulo persistent array size. Such

a persistent array implementation is in fact an IntMap.

An important observation is that the most efficient fully persistent array we

came up in Chapter 6 is in fact a tree structure, so the overhead of an intmap

(or we may call it a sparse persistent array) is justifiable – see the difference of

IntMap and Tree_A2 performance in Figure 6.2.

Following this idea, we can implement a HashSet elem as:

data HashSet elem = HashSet (IntMap (Set elem))

The HashSet is therefore an IntMap indexed by the hash value of an element. In

the IntMap, there is a Set elem containing elements with the same hash value

(this set will be of size one if there are no hash collisions). A HashMap can be

implemented in the same way as

data HashMap key val = HashMap (IntMap (Map key val)).

Such a data structure is sometimes called a hash trie and has already described

in [Gou94] or in [Bag01].

This data structure is quite simple to implement, using the methods of an

IntMap and a Set or a Map. It offers the subset of IntMap interface which does

not depend on the elements being stored in ascending order (the elements are

stored in ascending order of the hash value only). Namely, we do not provide

toAscList, split, and the methods working with the minimum and maximum

element (findMin, findMax and others). Moreover, the folds and maps are per-

formed in unspecified element order.

We uploaded our implementation to the HackageDB as a package called

hashmap.

We performed the same lookup, insert and delete benchmark on the HashSet

as on the Set and IntSet. We used the original unimproved implementation

of the containers package – the performance of the HashSet further increases

with the improvements from Section 8.3 incorporated.

8.4. NEW HASHING-BASED CONTAINER 141

The performance of a HashSet of Ints is displayed in Figure 8.15. It is of

course worse than the IntSet, because it uses an additional Set for elements

with same hash values.

The HashSet should be beneficial when the comparison of the set elements

is expensive. We therefore benchmarked it with Strings and ByteStrings ele-

ments. We compared the HashSet implementation to all alternatives present on

the HackageDB (mostly trie-like data structures):

• ListTrie and PatriciaTrie from the list-tries package implementing

a trie and a Patricia trie (Section 6.3 of [Knu98]),

• BStrTrie from the bytestring-trie package, which implements a big-

endian Patricia tree [OG98] specialised for ByteStrings,

• StringSet from the TernaryTrees package, which implements a ternary

search tree [BS98] specialised for the elements of type String,

• TernaryTrie from EdisonCore also implementing a ternary search tree.

The results are presented in Figures 8.16 and 8.17. The length of the strings

used in the benchmarks is the last number in the input description. We used uni-

formly distributed random strings of small letters (rnd in the input description)

and also a consecutive ascending sequence of strings (asc in the input descrip-

tion). In the latter case, the strings have a long common prefix of a’s. The

ListTrie is not present in the benchmark results, because it was 5-10 times

slower than the HashSet.

The HashSetNoC is the same as the HashSet, only the computation of a hash

value of a ByteString is done in Haskell and not in C. There is quite significant

slowdown in the case Haskell generating the hashing code. We discussed this with

the GHC developers and were informed that the problem should be solved using

the new LLVM backend [Ter09].

We also performed the union benchmark. We generated a sequence of elements

(its length is the first part of the input description) and created two sets of the

same size, one from the odd elements and the other from the even elements.

We then performed a union of those sets. The results for Int, String and

ByteString elements are presented in Figure 8.18.

The performance of a HashSet is superior to trie structures, even those spe-

cialised for String or ByteString elements. As mentioned, the performance with

the current version of containers is substantially improved (the Figures 8.13

and 8.14 show the improvements of the current containers version).

142 CHAPTER 8. THE HASKELL CONTAINERS PACKAGE

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

0
4

/a
s
c

0
4

/r
n

d

1
2

/a
s
c

1
2

/r
n

d

2
0

/a
s
c

2
0

/r
n

d

n
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t
im

e

Hashset: lookup-int

HashSet(100.0%)
IntSet(88.7%)

AVL(94.3%)
Set(129.0%)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

0
4
/a

s
c

0
4
/r

n
d

1
2
/a

s
c

1
2
/r

n
d

2
0
/a

s
c

2
0
/r

n
d

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

Hashset: insert-int

HashSet(100.0%)
IntSet(76.7%)

AVL(114.7%)
Set(233.9%)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0
4
/a

s
c

0
4
/r

n
d

1
2
/a

s
c

1
2
/r

n
d

2
0
/a

s
c

2
0
/r

n
d

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n

 t
im

e

Hashset: delete-int

HashSet(100.0%)
IntSet(77.0%)

AVL(204.1%)
Set(207.8%)

Figure 8.15: Benchmark of hashset operations on Ints

8.4. NEW HASHING-BASED CONTAINER 143

 0

 1

 2

 3

 4

 5

 6

0
4

/a
s
c
0

5

0
4

/a
s
c
2

0

0
4

/a
s
c
5

0

0
4

/r
n

d
0

5

0
4

/r
n

d
5

0

1
0

/a
s
c
0

5

1
0

/a
s
c
2

0

1
0

/a
s
c
5

0

1
0

/r
n

d
0

5

1
0

/r
n

d
5

0

1
6

/a
s
c
0

5

1
6

/a
s
c
2

0

1
6

/a
s
c
5

0

1
6

/r
n

d
0

5

1
6

/r
n

d
5

0

n
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t
im

e
6.1

Hashset: lookup-str

HashSet(100.0%)
StringSet(119.2%)

TernaryTrie(132.7%)
PatriciaTrie(171.4%)

AVL(208.2%)
Set(239.8%)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

0
4
/a

s
c
0
5

0
4
/a

s
c
2
0

0
4
/a

s
c
5
0

0
4
/r

n
d
0
5

0
4
/r

n
d
5
0

1
0
/a

s
c
0
5

1
0
/a

s
c
2
0

1
0
/a

s
c
5
0

1
0
/r

n
d
0
5

1
0
/r

n
d
5
0

1
6
/a

s
c
0
5

1
6
/a

s
c
2
0

1
6
/a

s
c
5
0

1
6
/r

n
d
0
5

1
6
/r

n
d
5
0

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

14.0

Hashset: insert-str

HashSet(100.0%)
AVL(197.5%)

TernaryTrie(282.6%)
Set(285.7%)

StringSet(286.4%)
PatriciaTrie(358.1%)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

0
4
/a

s
c
0
5

0
4
/a

s
c
2
0

0
4
/a

s
c
5
0

0
4
/r

n
d
0
5

0
4
/r

n
d
5
0

1
0
/a

s
c
0
5

1
0
/a

s
c
2
0

1
0
/a

s
c
5
0

1
0
/r

n
d
0
5

1
0
/r

n
d
5
0

1
6
/a

s
c
0
5

1
6
/a

s
c
2
0

1
6
/a

s
c
5
0

1
6
/r

n
d
0
5

1
6
/r

n
d
5
0

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

7.5 16.4 12.7

Hashset: delete-str

HashSet(100.0%)
AVL(213.7%)

Set(218.6%)
TernaryTrie(295.7%)

PatriciaTrie(327.5%)

Figure 8.16: Benchmark of hashset operations on Strings

144 CHAPTER 8. THE HASKELL CONTAINERS PACKAGE

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

0
4

/a
s
c
0

5

0
4

/a
s
c
2

0

0
4

/a
s
c
5

0

0
4

/r
n

d
0

5

0
4

/r
n

d
5

0

1
0

/a
s
c
0

5

1
0

/a
s
c
2

0

1
0

/a
s
c
5

0

1
0

/r
n

d
0

5

1
0

/r
n

d
5

0

1
6

/a
s
c
0

5

1
6

/a
s
c
2

0

1
6

/a
s
c
5

0

1
6

/r
n

d
0

5

1
6

/r
n

d
5

0

n
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t
im

e
5.7

Hashset: lookup-bst

HashSet(100.0%)
HashSetNoC(122.2%)

BStrTrie(209.2%)
AVL(255.1%)

Set(270.9%)

 0

 1

 2

 3

 4

 5

 6

0
4
/a

s
c
0
5

0
4
/a

s
c
2
0

0
4
/a

s
c
5
0

0
4
/r

n
d
0
5

0
4
/r

n
d
5
0

1
0
/a

s
c
0
5

1
0
/a

s
c
2
0

1
0
/a

s
c
5
0

1
0
/r

n
d
0
5

1
0
/r

n
d
5
0

1
6
/a

s
c
0
5

1
6
/a

s
c
2
0

1
6
/a

s
c
5
0

1
6
/r

n
d
0
5

1
6
/r

n
d
5
0

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

7.7 8.9 10.1 6.9 9.0

Hashset: insert-bst

HashSet(100.0%)
HashSetNoC(118.5%)

AVL(284.9%)
BStrTrie(317.8%)

Set(440.8%)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

0
4
/a

s
c
0
5

0
4
/a

s
c
2
0

0
4
/a

s
c
5
0

0
4
/r

n
d
0
5

0
4
/r

n
d
5
0

1
0
/a

s
c
0
5

1
0
/a

s
c
2
0

1
0
/a

s
c
5
0

1
0
/r

n
d
0
5

1
0
/r

n
d
5
0

1
6
/a

s
c
0
5

1
6
/a

s
c
2
0

1
6
/a

s
c
5
0

1
6
/r

n
d
0
5

1
6
/r

n
d
5
0

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

4.6

Hashset: delete-bst

HashSet(100.0%)
HashSetNoC(117.4%)

BStrTrie(199.9%)
AVL(240.1%)

Set(240.7%)

Figure 8.17: Benchmark of hashset operations on ByteStrings

8.4. NEW HASHING-BASED CONTAINER 145

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0
4

/a
s
c

0
4

/r
n

d

1
2

/a
s
c

1
2

/r
n

d

2
0

/a
s
c

2
0

/r
n

d

n
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t
im

e

Hashset: union-int

HashSet(100.0%)
IntSet(94.7%)

AVL(146.8%)
Set(271.9%)

 0

 1

 2

 3

 4

 5

 6

 7

 8

0
4
/a

s
c
0
5

0
4
/a

s
c
2
0

0
4
/a

s
c
5
0

0
4
/r

n
d
0
5

0
4
/r

n
d
5
0

1
0
/a

s
c
0
5

1
0
/a

s
c
2
0

1
0
/a

s
c
5
0

1
0
/r

n
d
0
5

1
0
/r

n
d
5
0

1
6
/a

s
c
0
5

1
6
/a

s
c
2
0

1
6
/a

s
c
5
0

1
6
/r

n
d
0
5

1
6
/r

n
d
5
0

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

11.2 17.2 20.9

Hashset: union-str

HashSet(100.0%)
AVL(153.9%)

Set(249.4%)
TernaryTrie(296.3%)

PatriciaTrie(359.3%)

 0

 1

 2

 3

 4

 5

 6

 7

0
4
/a

s
c
0
5

0
4
/a

s
c
2
0

0
4
/a

s
c
5
0

0
4
/r

n
d
0
5

0
4
/r

n
d
5
0

1
0
/a

s
c
0
5

1
0
/a

s
c
2
0

1
0
/a

s
c
5
0

1
0
/r

n
d
0
5

1
0
/r

n
d
5
0

1
6
/a

s
c
0
5

1
6
/a

s
c
2
0

1
6
/a

s
c
5
0

1
6
/r

n
d
0
5

1
6
/r

n
d
5
0

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o

n
 t

im
e

7.3 10.7 8.5 12.8

Hashset: union-bst

HashSet(100.0%)
HashSetNoC(100.4%)

AVL(293.7%)
BStrTrie(326.7%)

Set(561.6%)

Figure 8.18: Benchmark of union operation on hashset

146 CHAPTER 8. THE HASKELL CONTAINERS PACKAGE

8.5 Chapter Notes

This chapter contains original work and is based on the author’s paper [Str10].

Several applications to the Haskell library packages originate from our work

on the containers package:

• The containers package, a widely used standard library package, has been

considerably improved, making it comparable and very frequently superior

to other implementations available. In addition, the author of this thesis

has become a maintainer of this package.

• GHC, a widely used Haskell compiler, has been improved to perform more

optimization needed in the containers package. Notably, a new specialise

pass and an INLINABLE pragma were added. Also, the containers pack-

age is now used in the compiler implementation, instead of in-house data

structures.

• People maintaining other data structure packages used in our benchmarks

were motivated to improve the performance of their implementations (we

know of performance improvements to at least two packages).

• The new hashmap package containing an implementation of a new persis-

tent data structure based on hashing has been created. This structure offers

supreme performance out of available set implementations with String and

ByteString elements, but should perform well for any element type whose

comparison is expensive. This data structure is now available on the Hack-

ageDB.

Our hashmap package also inspired Johan Tibell to create another hash

trie implementation, with higher branching factors than 2. His package

unordered-containers is based on [Bag01], which is a generalization of

IntMap to higher branching factors (usually 16 or 32). Because of the high

branching factor, only the nonempty children of a given node are represent-

ed, compactly in a continuous block of memory. A bitmap is used to indicate

which children are nonempty and provides a mapping between children in-

dex and nonempty children index. Because the resulting tree structure has

higher branching factor, it has lower depth and index is faster then in our

hashmap package. To compare the update and other operations, further

benchmarking would be necessary, similar to the experiments in Section 6.2.

Chapter 9

Conclusion

The goal of this thesis was to design new data structures and improve the existing

data structures that can be used in functional programming languages.

In the first part of the thesis we focused on persistent data structures, which

are structures preserving previous versions of themselves when modified. We

started by describing known methods of making data structures persistent. These

methods operate effectively on linked data structures of bounded in-degree with

worst-case operations. The resulting persistent structures can have either amor-

tized or worst-case bounds. In case of amortized bounds, the complexity of ac-

cessing and updating the resulting persistent structure is asymptotically constant.

The worst-case complexity of partially persistent structure is also O(1), however,

no method is known which would create fully persistent structures with worst-

case constant time operations. The existence of such a method is an interesting

open problem.

The main contribution of the first part of the thesis is the study of persis-

tent arrays. We presented simplified implementation of a fully persistent ar-

ray with optimal amortized complexity. We also presented a worst-case fully

persistent array implementation with complexity of O(log log n + S(n)), where

S(n) is the complexity of operations of dynamic integer set containing n inte-

gers bounded by nO(1). Currently, the best known structure operates in time

O((log log n)2/ log log log n) and it is a notable open problem whether this can be

reduced to O(log log n). If so, the worst-case persistent array would be optimal.

Utilizing a known reduction of predecessor search problem to persistent array

lookup we showed Ω(log log n) lower bound on the lookup complexity of partially

persistent array1 in the cell probe model, where n is the number of array ele-

ments. This non-constant lower bound implies several important consequences.

1The lower bound and the reduction is mentioned in [DLP08].

147

148 CHAPTER 9. CONCLUSION

Firstly, persistent data structures can have asymptotically worse complexity than

ephemeral data structures. Secondly, even though any worst-case data structure

can be made fully persistent using fully persistent array to simulate the memory

of a RAM, the resulting data structure may be suboptimal.

When using a persistent array in a functional language, versions of the array

which cannot be used any more should be removed from the array. However,

there are complex dependencies among the array versions in performant persis-

tent array implementations. On that account we designed algorithms that allow

efficient recognition and removal of inaccessible versions from the array, mak-

ing the memory complexity of the persistent array asymptotically optimal in the

number of accessible array versions.

In the second part of the thesis we dealt with purely functional data structures.

We created a fully persistent array implementation with O(b · logb n) complexity

and found the optimal value of the constant b using benchmarking. This com-

plexity is asymptotically optimal when the array is represented by a linked data

structure.

The main contribution of the second part of the thesis is the study of Adams’

trees, which are fully persistent balanced binary search trees frequently used in

functional languages. We corrected the existing proof of Adams’ trees balance,

which was flawed, causing the existing implementations to sometimes violate the

balance condition. We explored the parameter space of Adams’ trees in detail

and presented correctness proof and performance measurements for the most

suitable parameters. In addition, we devised an improved representation leading

to reduced memory complexity and faster running times.

Finally, we described in this thesis our contribution to improving the standard

Haskell library of purely functional data structures. The library contains imple-

mentations of Adams’ trees, big-endian Patricia tries (both classic and dense)

and 2-3 finger trees annotated with sizes. Currently the library offers the most

efficient implementations available and is used by every third Haskell package (as

of 14th May 2013, by 1782 out of 5132 packages available on HackageDB, which

is a centralized repository of Haskell packages).

To conclude, we devoted this thesis to the study of persistent data structures,

discussed their properties and gave bounds on their complexities. We did not limit

ourselves to theoretical research, but we also provided efficient implementations

of these structures. Persistent data structures remain an interesting field of study

with a number of open problems to be solved.

Bibliography

[Ada92] Stephen Adams. Implementing sets efficiently in a functional lan-

guage. Technical Report CSTR 92-10, 1992.

[Ada93] Stephen Adams. Efficient sets – a balancing act. J. Funct. Program.,

3(4):553–561, 1993.

[AFK84] M. Ajtai, M. Fredman, and J. Komlós. Hash functions for priority

queues. Information and Control, 63(3):217 – 225, 1984.

[AHN88] A. Aasa, Sören Holmström, and Christina Nilsson. An efficiency com-

parison of some representations of purely functional arrays. BIT,

28(3):490–503, 1988.

[AT07] Arne Andersson and Mikkel Thorup. Dynamic ordered sets with ex-

ponential search trees. J. ACM, 54(3):13, 2007.

[AV96] L. Arge and J. Vitter. Optimal dynamic interval management in

external memory. In In FOCS, 1996.

[AVL62] G. M. Adelson-Velskii and E. M. Landis. An algorithm for the orga-

nization of information. Dokladi Akademia Nauk SSSR, 16(2), 1962.

[Bag01] Phil Bagwell. Ideal hash trees. Es Grands Champs, 1195, 2001.

[Bak78a] Henry G. Baker. Shallow binding in lisp 1.5. Commun. ACM,

21(7):565–569, 1978.

[Bak78b] Henry G. Baker, Jr. List processing in real time on a serial computer.

Commun. ACM, 21(4):280–294, 1978.

[Bak91] Henry G. Baker. Shallow binding makes functional arrays fast. SIG-

PLAN Notices, 26:1991–145, 1991.

[BBC+12] Martin Babka, Jan Bulánek, Vladimír Cunát, Michal Koucký, and

Michael Saks. On online labeling with polynomially many labels. In

ESA, pages 121–132, 2012.

149

150 BIBLIOGRAPHY

[BCD+02] Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-

Colton, and Jack Zito. Two simplified algorithms for maintaining

order in a list. In ESA ’02: Proceedings of the 10th Annual Euro-

pean Symposium on Algorithms, pages 152–164, London, UK, 2002.

Springer-Verlag.

[BF01] Paul Beame and Faith E. Fich. Optimal bounds for the predeces-

sor problem and related problems. Journal of Computer and System

Sciences, 65:2002, 2001.

[BKS12] Jan Bulánek, Michal Koucký, and Michael Saks. Tight lower bounds

for the online labeling problem. In Proceedings of the 44th symposium

on Theory of Computing, STOC ’12, pages 1185–1198, New York, NY,

USA, 2012. ACM.

[BKZ76] P. Van Ende Boas, R. Kaas, and E. Zijlstra. Design and implemen-

tation of an efficient priority queue. Theory of Computing Systems,

10(1):99–127, 1976.

[Blu86] Norbert Blum. On the single-operation worst-case time complexity of

the disjoint set union problem. SIAM J. Comput., 15(4):1021–1024,

1986.

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and mainte-

nance of large ordered indices. Acta Informatica, 1:173–189, 1972.

[BO96] Gerth S. Brodal and Chris Okasaki. Optimal purely functional pri-

ority queues. Journal of Functional Programming, 6:839–857, 1996.

[Bro96] Gerth Stolting Brodal. Partially persistent data structures of bounded

degree with constant update time. Nordic J. of Computing, 3(3):238–

255, 1996.

[BS98] Jon Bentley and Robert Sedgewick. Ternary search trees. Dr. Dobb’s

Journal, April 1998.

[BS07] Richard S. Bird and Stefan Sadnicki. Minimal on-line labelling. Inf.

Process. Lett., 101(1):41–45, 2007.

[Cam] Taylor Campbell. Reported a bug in the Data.Map module of the

Haskell containers package to the libraries@haskell.org mail-

ing list on 3rd August 2010.

BIBLIOGRAPHY 151

[Cha85] Bernard Chazelle. How to search in history. Information and Control,

64(1–3):77 – 99, 1985.

[Chu92] Tyng-Ruey Chuang. Fully persistent arrays for efficient incremen-

tal updates and voluminous reads. In 4th European Symposium on

Programming, pages 110–129. Springer–Verlag, 1992.

[Chu94] Tyng-Ruey Chuang. A randomized implementation of multiple func-

tional arrays. In In Proceedings of 1994 ACM Conference on Lisp and

Functional Programming, pages 173–184. ACM Press, 1994.

[Coh84] Shimon Cohen. Multi-version structures in prolog. In FGCS, pages

265–274, 1984.

[Col86] Richard Cole. Searching and sorting similar lists. J. Algorithms,

7(2):202–220, June 1986.

[CPT92] J. Cai, R. Paige, and R. Tarjan. More efficient bottom-up multi-

pattern matching in trees. Theor. Comput. Sci., 106(1):21–60, 1992.

[dB46] N. G. de Bruijn. A Combinatorial Problem. Koninklijke Nederland-

sche Akademie Van Wetenschappen, 49(6):758–764, 1946.

[DGST88] James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E.

Tarjan. Relaxed heaps: an alternative to fibonacci heaps with appli-

cations to parallel computation. Commun. ACM, 31(11):1343–1354,

1988.

[Die82] Paul F. Dietz. Maintaining order in a linked list. In STOC, pages

122–127, 1982.

[Die89] Paul F. Dietz. Fully persistent arrays (extended abstract). In WADS

’89: Proceedings of the Workshop on Algorithms and Data Structures,

pages 67–74, London, UK, 1989. Springer-Verlag.

[DKM+94] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Mey-

er auf der Heide, Hans Rohnert, and Robert E. Tarjan. Dynam-

ic perfect hashing: Upper and lower bounds. SIAM J. Comput.,

23(4):738–761, 1994.

[DLP08] Erik D. Demaine, Stefan Langerman, and Eric Price. Confluently

persistent tries for efficient version control. In SWAT ’08: Proceedings

152 BIBLIOGRAPHY

of the 11th Scandinavian workshop on Algorithm Theory, pages 160–

172, Berlin, Heidelberg, 2008. Springer-Verlag.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for functional

programs. In Proceedings of the 9th ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languages, POPL ’82, pages

207–212, New York, NY, USA, 1982. ACM.

[DM85] David P. Dobkin and J. Ian Munro. Efficient uses of the past. J.

Algorithms, 6(4):455–465, 1985.

[DS87] Paul F. Dietz and Daniel D. Sleator. Two algorithms for maintaining

order in a list. In STOC ’87: Proceedings of the nineteenth annual

ACM symposium on Theory of computing, pages 365–372, New York,

NY, USA, 1987. ACM.

[DSST89] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E.

Tarjan. Making data structures persistent. Journal of Computer and

System Sciences, 38(1):86–124, 1989.

[DST94] James R. Driscoll, Daniel D. Sleator, and Robert E. Tarjan. Fully

persistent lists with catenation. J. ACM, 41(5):943–959, 1994.

[DSZ05] Paul F. Dietz, Joel I. Seiferas, and Ju Zhang. A tight lower bound for

online monotonic list labeling. SIAM J. Discret. Math., 18(3):626–

637, 2005.

[FK03] Amos Fiat and Haim Kaplan. Making data structures confluently

persistent. J. Algorithms, 48(1):16–58, 2003.

[Fre60] Edward Fredkin. Trie memory. Commun. ACM, 3(9):490–499, 1960.

[FS89] M. Fredman and M. Saks. The cell probe complexity of dynamic data

structures. In Proceedings of the twenty-first annual ACM symposium

on Theory of computing, STOC ’89, pages 345–354, New York, NY,

USA, 1989. ACM.

[FT87] Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and

their uses in improved network optimization algorithms. J. ACM,

34(3):596–615, 1987.

BIBLIOGRAPHY 153

[FW93] Michael L. Fredman and Dan E. Willard. Surpassing the information

theoretic bound with fusion trees. Journal of Computer and System

Sciences, 47(3):424 – 436, 1993.

[FW94] Michael L. Fredman and Dan E. Willard. Trans-dichotomous algo-

rithms for minimum spanning trees and shortest paths. Journal of

Computer and System Sciences, 48(3):533–551, 1994.

[Gou94] Jean Goubault. HimML: Standard ML with fast sets and maps. In

In 5th ACM SIGPLAN Workshop on ML and its Applications. ACM

Press, 1994.

[GS78] Leo J. Guibas and Robert Sedgewick. A dichromatic framework for

balanced trees. Foundations of Computer Science, Annual IEEE Sym-

posium on, 0:8–21, 1978.

[HP92] H. Huitema and R. Plasmeijer. The Concurrent Clean system user’s

manual, version 0.8. Technical Report 92-19. University of Nijmegen,

Dept. of Informatics, Nijmegen, 1992.

[HP06] Ralf Hinze and Ross Paterson. Finger trees: a simple general-purpose

data structure. J. Funct. Program., 16(2):197–217, 2006.

[Hug85] John Hughes. An efficient implementation of purely functional arrays.

Technical report, Dept. of Computer Sciences, Chalmers University

of Technology, Göteborg, 1985.

[Hug89] John Hughes. Why functional programming matters. Comput. J.,

32(2):98–107, 1989.

[HY11] Yoichi Hirai and Kazuhiko Yamamoto. Balancing weight-balanced

trees. J. Funct. Program., 21(3):287–307, 2011.

[IKR81] Alon Itai, Alan G. Konheim, and Michael Rodeh. A sparse table im-

plementation of priority queues. In Proceedings of the 8th Colloquium

on Automata, Languages and Programming, pages 417–431, London,

UK, UK, 1981. Springer-Verlag.

[KM83] T. Krynen and L.G.L.T. Meertens. Making B-trees Work for B.

IW 219/83. The Mathematical Centre, Amsterdam, The Nederlands,

1983.

154 BIBLIOGRAPHY

[Knu98] Donald E. Knuth. The art of computer programming, volume 3: (2nd

ed.) sorting and searching. Addison Wesley Longman Publishing Co.,

Inc., Redwood City, CA, USA, 1998.

[Loe09] Jon Loeliger. Version Control with Git: Powerful Tools and Tech-

niques for Collaborative Software Development. O’Reilly Media, Inc.,

1st edition, 2009.

[LPJ94] John Launchbury and Simon Peyton Jones. Lazy functional state

threads. In Proceedings of the ACM SIGPLAN 1994 conference on

Programming language design and implementation, PLDI ’94, pages

24–35, New York, NY, USA, 1994. ACM.

[Mar10] Simon Marlow. Haskell 2010 language report, available online at

http://www.haskell.org/definition/haskell2010.pdf, 2010.

[Mor68] Donald R. Morrison. PATRICIA – practical algorithm to retrieve

information coded in alphanumeric. J. ACM, 15(4):514–534, 1968.

[Mye83] Eugene W. Myers. An applicative random-access stack. Inf. Process.

Lett., 17(5):241–248, 1983.

[Mye84] Eugene W. Myers. Efficient applicative data types. In Proceedings of

the 11th ACM SIGACT-SIGPLAN symposium on Principles of pro-

gramming languages, POPL ’84, pages 66–75, New York, NY, USA,

1984. ACM.

[MYPJ07] Simon Marlow, Alexey Rodriguez Yakushev, and Simon Pey-

ton Jones. Faster laziness using dynamic pointer tagging. In Proceed-

ings of the 12th ACM SIGPLAN international conference on Func-

tional programming, ICFP ’07, pages 277–288, New York, NY, USA,

2007. ACM.

[NR72] J. Nievergelt and E. M. Reingold. Binary search trees of bounded

balance. In STOC ’72: Proceedings of the fourth annual ACM sym-

posium on Theory of computing, pages 137–142, New York, NY, USA,

1972. ACM.

[OB97] Melissa E. O’Neill and F. Warren Burton. A new method for func-

tional arrays. Journal of Functional Programming, 7:1–14, 1997.

[OG98] Chris Okasaki and Andy Gill. Fast mergeable integer maps. In ACM

SIGPLAN Workshop on ML, pages 77–86, September 1998.

http://www.haskell.org/definition/haskell2010.pdf

BIBLIOGRAPHY 155

[Oka99] Chris Okasaki. Purely Functional Data Structures. Cambridge Uni-

versity Press, July 1999.

[Ove81a] Mark H. Overmars. Searching in the past I. Technical Report

RUU-CS-81-07, Department of Information and Computing Sciences,

Utrecht University, 1981.

[Ove81b] Mark H. Overmars. Searching in the past II - general transforma-

tions. Technical Report RUU-CS-81-09, Department of Information

and Computing Sciences, Utrecht University, 1981.

[Ove83a] Mark H. Overmars. Global rebuilding. In The Design of Dynamic

Data Structures, volume 156 of Lecture Notes in Computer Science,

pages 67–77. Springer Berlin / Heidelberg, 1983.

[Ove83b] Mark H. Overmars. Partial rebuilding. In The Design of Dynamic

Data Structures, volume 156 of Lecture Notes in Computer Science,

pages 52–66. Springer Berlin / Heidelberg, 1983.

[PJ87] Simon Peyton Jones. The Implementation of Functional Programming

Languages (Prentice-Hall International Series in Computer Science).

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987.

[PJ+03] Simon Peyton Jones et al. The Haskell 98 language and libraries: The

revised report. Journal of Functional Programming, 13(1):0–255, Jan

2003.

[PJRR99] Simon Peyton Jones, Norman Ramsey, and Fermin Reig. C--: A

portable assembly language that supports garbage collection. In

PPDP, pages 1–28, 1999.

[PkgCont] The Haskell containers package. The latest version is available at

http://hackage.haskell.org/package/containers.

[PkgCrit] The Haskell criterion package. The latest version is available at

http://hackage.haskell.org/package/criterion.

[PT06] Mihai Pătraşcu and Mikkel Thorup. Time-space trade-offs for prede-

cessor search. In STOC ’06: Proceedings of the thirty-eighth annual

ACM symposium on Theory of computing, pages 232–240, New York,

NY, USA, 2006. ACM.

http://hackage.haskell.org/package/containers
http://hackage.haskell.org/package/criterion

156 BIBLIOGRAPHY

[PT07] Mihai Pǎtraşcu and Mikkel Thorup. Randomization does not help

searching predecessors. In SODA ’07: Proceedings of the eighteenth

annual ACM-SIAM symposium on Discrete algorithms, pages 555–

564, Philadelphia, PA, USA, 2007. Society for Industrial and Applied

Mathematics.

[Pug89] W. Pugh. Skip lists: a probabilistic alternative to balanced trees. In

In WADS, 1989.

[Ram92] Rajeev Raman. Eliminating amortization: on data structures with

guaranteed response time. PhD thesis, University of Rochester,

Rochester, NY, USA, 1992.

[Ram96] Rajeev Raman. Priority queues: Small, monotone and trans-

dichotomous. In Proceedings of the Fourth Annual European Sym-

posium on Algorithms, ESA ’96, pages 121–137, London, UK, UK,

1996. Springer-Verlag.

[Rou01] Salvador Roura. A new method for balancing binary search trees.

In Automata, Languages and Programming, volume 2076 of Lecture

Notes in Computer Science, pages 469–480. Springer Berlin Heidel-

berg, 2001.

[RTD83a] Thomas Reps, Tim Teitelbaum, and Alan Demers. Incremental

context-dependent analysis for language-based editors. ACM Trans.

Program. Lang. Syst., 5(3):449–477, 1983.

[RTD83b] Thomas Reps, Tim Teitelbaum, and Alan Demers. Incremental

context-dependent analysis for language-based editors. ACM Trans.

Program. Lang. Syst., 5(3):449–477, 1983.

[Sch80] Arnold Schönhage. Storage modification machines. SIAM J. Comput.,

9(3):490–508, 1980.

[SL94] Alexander Stepanov and Meng Lee. The standard template library.

Technical report, WG21/N0482, ISO Programming Language C++

Project, 1994.

[ST85] Daniel D. Sleator and Robert E. Tarjan. Self-adjusting binary search

trees. J. ACM, 32(3):652–686, 1985.

[ST86] Neil Sarnak and Robert E. Tarjan. Planar point location using per-

sistent search trees. Commun. ACM, 29(7):669–679, 1986.

BIBLIOGRAPHY 157

[Str09] Milan Straka. Optimal worst-case fully persistent arrays. Presented

at Trends in Functional Programming, 2009.

[Str10] Milan Straka. The performance of the Haskell containers package. In

Proceedings of the third ACM Haskell symposium on Haskell, Haskell

’10, pages 13–24, New York, NY, USA, 2010. ACM.

[Str12] Milan Straka. Adams’ trees revisited - correctness proof and efficient

implementation. In Trends in Functional Programming, volume 7193

of Lecture Notes in Computer Science, pages 130–145. Springer Berlin

/ Heidelberg, 2012.

[Tar75] Robert E. Tarjan. Efficiency of a good but not linear set union algo-

rithm. J. ACM, 22(2):215–225, 1975.

[Tar83] Robert E. Tarjan. Data structures and network algorithms. Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA, 1983.

[Ter09] David A. Terei. Low level virtual machine for Glasgow Haskell Com-

piler, 2009. BSc Thesis.

[Tol01] Andrew Tolmach. An external representation for the GHC Core

Language, 2001. The latest version of the paper is available at

http://www.haskell.org/ghc/docs/papers/core.ps.gz.

[Tsa84] Athanasios K. Tsakalidis. Maintaining order in a generalized linked

list. Acta Inf., 21(1):101–112, 1984.

[Tur86] D Turner. An overview of miranda. SIGPLAN Not., 21(12):158–166,

1986.

[vEB77] Peter van Emde Boas. Preserving order in a forest in less than loga-

rithmic time and linear space. Inf. Process. Lett., 6(3):80–82, 1977.

[Wad76] Philip Wadler. Analysis of an algorithm for real time garbage collec-

tion. Commun. ACM, 19(9):491–500, 1976.

[Wad87] Philip Wadler. A new array operation. In Graph Reduction, volume

279 of Lecture Notes in Computer Science, pages 328–335. Springer

Berlin Heidelberg, 1987.

[Wad90a] Philip Wadler. Comprehending monads. In Proceedings of the 1990

ACM conference on LISP and functional programming, LFP ’90,

pages 61–78, New York, NY, USA, 1990. ACM.

http://www.haskell.org/ghc/docs/papers/core.ps.gz

158 BIBLIOGRAPHY

[Wad90b] Philip Wadler. Linear types can change the world! In IFIP TC 2

Working Conference on Programming Concepts and Methods, Sea of

Galilee, Israel, pages 347–359. North Holland, 1990.

[Wad92] Philip Wadler. The essence of functional programming. In Proceedings

of the 19th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, POPL ’92, pages 1–14, New York, NY, USA,

1992. ACM.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to

type soundness. Inf. Comput., 115(1):38–94, 1994.

[Wil92] Dan E. Willard. A density control algorithm for doing insertions and

deletions in a sequentially ordered file in a good worst-case time. Inf.

Comput., 97(2):150–204, 1992.

[Yao81] Andrew Chi-Chih Yao. Should tables be sorted? J. ACM, 28(3):615–

628, 1981.

List of Terms and Abbreviations

BB-ω tree tree of bounded balance, used in the containers

package for implementing set and map, Definition 7.2

big-endian

Patricia trie

compressed trie storing numbers as bit sequences,

used in the containers package for implementing

intset and intmap, Section 8.1.2

cell probe model model of computation introduced by [Yao81]

dynamic integer set structure representing a set of n integers, providing

insert, search and delete operations, Chapter 4

exponential tree dynamic integer set structure, Section 4.2

fat node method method of creating persistent structures, Sections 2.2.1

and 2.2.2

node copying method of creating persistent structures, Section 2.2.1

node splitting method of creating persistent structures, Section 2.2.2

intmap map with integer keys, Section 8.1.2

intset set of integers, Section 8.1.2

linked data structure pointer-based data structure, Definition 2.2

path copying method method of creating persistent structures, Section 2.1

RAM random access machine, [Sch80]

vEB tree, vEBT van Emde Boas tree, Definition 4.1

version list preorder traversal of version tree, Definition 3.1

159

160 LIST OF TERMS AND ABBREVIATIONS

List of Figures

1.1 Planar location using partially persistent search tree 6

2.1 Path copying method after modifying list element x3 17

2.2 Path copying method after modifying tree element x3 17

2.3 Partially persistent list created using the fat node method 20

2.4 Partially persistent list created using the node copying method . . 22

2.5 The version tree after performing updates from S. 33

4.1 Representing vEBT using regular and Patricia trie 57

5.1 Reduction of predecessor search to partially persistent array lookup 69

5.2 Fully persistent array implementation 72

5.3 Example of reachable array versions 79

6.1 Persistent array with 14 elements represented using a ternary tree 88

6.2 Benchmarks of persistent array implementations 92

7.1 Single and double rotations . 100

7.2 Parameters ω = 2 and ω ≥ 5 are not valid for any α and δ = 0 . . 102

7.3 The space of (ω, α, δ) parameters 102

7.4 Cases when n, x or y are zero and a single rotation is performed . 103

7.5 Cases when n, y, s or t are zero and a double rotation is performed 104

7.6 The normalized execution times of BB-ω trees with various ω . . . 108

8.1 A set implementation provided by the containers package . . . 115

8.2 Classic trie and compressed trie 116

8.3 Interface a sequence of elements from the containers package . . 116

8.4 A highly unbalanced tree called the centipede 120

8.5 Benchmark of sets operations I 120

8.6 Benchmark of sets operations II 121

8.7 Benchmark of intsets operations I 123

8.8 Benchmark of intsets operations II 124

8.9 Benchmark of queue operations 126

8.10 Benchmark of sequence operations 127

8.11 Benchmark of improved sets operations I 133

161

162 LIST OF FIGURES

8.12 Benchmark of improved sets operations II 134

8.13 Benchmark of improved intsets operations I 138

8.14 Benchmark of improved intsets operations II 139

8.15 Benchmark of hashset operations on Ints 142

8.16 Benchmark of hashset operations on Strings 143

8.17 Benchmark of hashset operations on ByteStrings 144

8.18 Benchmark of union operation on hashset 145

Attachments

A.1 Generating Figure 7.3

When generating Figure 7.3 of valid parameters for all trees up to size of 1 million,

we used the following code:

max_n = 1000000

find_min x p | p x = last $ x : takeWhile p [x-1, x-2 .. 0]

| otherwise = head $ dropWhile (not . p) [x+1, x+2 ..]

test w a d = and [delete n m && join n m | n <- [0 .. max_n],

let m = flr $ max 1 (w * n + d)]

where

delete n m = n == 0 || rebalance (n-1) m

join n m = rebalance n (m+increment)

where increment = max 1 $ ceil ((n+m+1-d) / (w+1) - 1)

rebalance n m = and [rebalance’ n m x | x <- nub [x_min, x_mid - 1,

x_mid, m - 1 - x_min]]

where x_min = find_min (flr $ m / (w+1)) (\x -> balanced x (m-1-x))

x_mid = find_min (flr $ m * a / (a+1)) (\x -> x >= a * (m-1-x))

rebalance’ n m x

| x < a * y = balanced n x && balanced (n + 1 + x) y

| otherwise = balanced n s && balanced t y && balanced (n+1+s) (t+1+y)&&

balanced n t && balanced s y && balanced (n+1+t) (s+1+y)

where(y,s,t)=(m-1-x,find_min (flr$x/(w+1)) (\s->balanced s (x-1-s)),x-1-s)

balanced n m = max 1 (w * n + d) >= m && n <= max 1 (w * m + d)

flr, ceil :: Double -> Double

flr = fromInteger . floor

ceil = fromInteger . ceiling

results = [(w, a, d, test w a d) | w <- [2, 2.125 .. 5],

a <- [1, 1.125 .. 3], d <- [0 .. 3]]

It relies on the fact that when there is a tree which cannot be balanced, there

also exists a counterexample with a subtree as large as the balance condition

allows. Therefore, for a fixed value of n it is enough to try the largest possible

m and for a fixed value of m it is enough to verify that the balance condition is

restored when considering the smallest and the largest subtree causing a single

rotation and the smallest and the largest subtree causing a double rotation.

163

164 ATTACHMENTS

A.2 Packages Used in Chapter 8

All packages mentioned in Chapter 8 can be found on the HackageDB, which is

a public collection of packages released by the Haskell community. The list of

HackageDB packages currently resides at http://hackage.haskell.org/.

We used the following packages in the benchmarks:

Package Version used

array 0.3.0.0

AvlTree 4.2

bytestring-trie 0.1.4

containers 0.3.0.0

criterion 0.5.0.0

EdisonCore 1.2.1.3

hashmap 1.0.0.3

list-tries 0.2

progression 0.3

random-access-list 0.2

TernaryTrees 0.1.3.4

TreeStructures 0.0.2

Table A.1: Packages used for benchmarks

We also benchmarked internal data structures of the GHC compiler. Their

implementation can be found in the sources of GHC 6.12.2, namely the files

FiniteMap.hs and UniqFM.hs in the compiler/utils directory.

	Title
	Contents
	Introduction
	Functional programming
	Referential Transparency
	First-Class Functions
	Type Systems
	Haskell
	Purely Functional Data Structures

	Persistent Data Structures
	Worst-Case and Amortized Complexity

	Structure of the Thesis
	Persistent Data Structures
	Purely Functional Data Structures

	I – Persistent Data Structures
	Making Data Structures Persistent
	Path Copying Method
	Making Linked Structures Persistent
	Partial Persistence
	Fat Node Method
	Node Copying Method

	Full Persistence
	Navigating the Version Tree
	Fat Node Method
	Node Splitting Method

	Making Linked Structures Persistent in the Worst Case
	Partial Persistence
	Full Persistence

	Making Amortized Structures Persistent
	Using the Rebuild Operation
	Using the Undo Operation

	Navigating the Version Tree
	Linearizing the Version Tree
	List Labelling
	Exponential Labels
	Polynomial Labels
	Connection to Weight-Balanced Trees
	Amortized Solution of List Labelling with Polynomial Labels
	Worst-Case Solution of List Labelling with Polynomial Labels

	Linear Labels

	List Order Problem
	Amortized Solution of List Order Problem
	Worst-Case Solution of List Order Problem

	Dynamic Integer Sets
	Van Emde Boas Trees
	Improving The Space Complexity of vEBT

	Exponential Trees
	Static Structures for Exponential Trees

	Persistent Arrays
	Related Work
	Persistent Arrays Provided in Functional Languages

	Lower Bound on Persistent Array Lookup
	Predecessor Search Problem
	Reduction to Persistent Array Lookup

	Amortized Persistent Array
	Partially Persistent Array
	Fully Persistent Array

	Worst-Case Persistent Array
	Improving Complexity of Persistent Array Operations
	Garbage Collection of a Persistent Array

	II – Purely Functional Data Structures
	Persistent Array Implementation
	Fully Persistent Array Implementation
	Choosing the Best Branching Factor

	BB-ω Trees
	BB-ω Trees
	BB-ω Tree Operations

	Rebalancing BB-ω Trees
	Choosing the Parameters ω, αand δ
	Validity of ω=2.5, ω=3 and ω=4
	Correctness of a Single Rotation
	Correctness of a Double Rotation

	BB-ω Trees Height
	Performance of BB-ω Trees
	Reducing Memory by Utilizing Additional Data Constructor
	The Order of Data Constructors

	The Haskell containers Package
	The containers Package
	Sets and Maps
	Intsets and Intmaps
	Sequences
	The Rest of the containers Package

	Benchmarks
	Benchmarking Methodology
	Benchmarking Sets
	Benchmarking Intsets
	Benchmarking Sequences
	Queue Functionality
	Persistent Array Functionality
	Summary

	Improving the containers Performance
	Improving Set and Map
	Improving IntSet and IntMap

	New Hashing-Based Container

	Conclusion
	Bibliography
	List of Terms and Abbreviations
	List of Figures
	Attachments
	Generating Figure 7.3
	Packages Used in Chapter 8

